102 research outputs found

    Essential Role for Cathepsin S in MHC Class II–Associated Invariant Chain Processing and Peptide Loading

    Get PDF
    AbstractDestruction of Ii by proteolysis is required for MHC class II molecules to bind antigenic peptides, and for transport of the resulting complexes to the cell surface. The cysteine protease cathepsin S is highly expressed in spleen, lymphocytes, monocytes, and other class II–positive cells, and is inducible with interferon-γ. Specific inhibition of cathepsin S in B lymphoblastoid cells prevented complete proteolysis of Ii, resulting in accumulation of a class II–associated 13 kDa Ii fragment in vivo. Consequently, the formation of SDS-stable complexes was markedly reduced. Purified cathepsin S, but not cathepsin B, H, or D, specifically digested Ii from αβIi trimers, generating αβ–CLIP complexes capable of binding exogenously added peptide in vitro. Thus, cathepsin S is essential in B cells for effective Ii proteolysis necessary to render class II molecules competent for binding peptides

    Development and Characterization of a Eukaryotic Expression System for Human Type II Procollagen

    Get PDF
    Background Triple helical collagens are the most abundant structural protein in vertebrates and are widely used as biomaterials for a variety of applications including drug delivery and cellular and tissue engineering. In these applications, the mechanics of this hierarchically structured protein play a key role, as does its chemical composition. To facilitate investigation into how gene mutations of collagen lead to disease as well as the rational development of tunable mechanical and chemical properties of this full-length protein, production of recombinant expressed protein is required. Results Here, we present a human type II procollagen expression system that produces full-length procollagen utilizing a previously characterized human fibrosarcoma cell line for production. The system exploits a non-covalently linked fluorescence readout for gene expression to facilitate screening of cell lines. Biochemical and biophysical characterization of the secreted, purified protein are used to demonstrate the proper formation and function of the protein. Assays to demonstrate fidelity include proteolytic digestion, mass spectrometric sequence and posttranslational composition analysis, circular dichroism spectroscopy, single-molecule stretching with optical tweezers, atomic-force microscopy imaging of fibril assembly, and transmission electron microscopy imaging of self-assembled fibrils. Conclusions Using a mammalian expression system, we produced full-length recombinant human type II procollagen. The integrity of the collagen preparation was verified by various structural and degradation assays. This system provides a platform from which to explore new directions in collagen manipulation

    Functional expression of human cathepsin S in Saccharomyces cerevisiae. Purification and characterization of the recombinant enzyme.

    Get PDF
    A cDNA encoding the human lysosomal cysteine proteinase cathepsin S precursor has been expressed in yeast using the pVT100-U expression vector containing the alpha-factor promoter. The procathepsin S gene was expressed either as a fusion protein with the pre-region or with the prepro-region of the yeast alpha-factor precursor gene. Following in vitro processing both constructs gave an identical active mature enzyme with a molecular weight of 24,000. After prolonged cultivation of the cells the recombinant protein is also found as an active proteinase in the culture supernatant. The precursor can be activated in vitro at pH 4.5 and 40 degrees C under reducing conditions. The in vitro activated enzyme has a 6-amino acid NH2-terminal extension when compared with the native bovine enzyme. The purified enzyme displays a bell-shaped pH activity profile with a pH optimum of 6.5 and pK values of 4.5 and 7.8. The isoelectric point of the recombinant human cathepsin S is between 8.3 and 8.6 and about 1.5 pH units higher than for the bovine enzyme. The kinetic data for several synthetic substrates and inhibitors reveal a preference for smaller amino acid residues in the binding subsites S2 and S3 of cathepsin S. Like the bovine enzyme, the recombinant human cathepsin S is characterized by a broader range of pH stability (pH 5-7.5) than cathepsins B and L

    Chemoenzymatic synthesis of organoselenium(IV) compounds and their evaluation as cysteine protease inhibitors

    Get PDF
    A series of organoselenium dihalides (organoselenanes) was synthesized from organoselenides using a chemoenzymatic approach. The organoselenanes have variations in their stereochemistry and in the halogen atom bonded to the selenium atom. Because of the unique selenium-thiol chemistry displayed by several organoselenium compounds, the organoselenanes were evaluated as new potential inhibitors of cysteine proteases (cathepsins S and V). By the analysis of the second-order rate constants of the inhibition of cathepsin S and V, it was possible to conclude that organoselenanes inhibited the cathepsin S faster than cathepsin V. It was observed higher inhibitory potencies for the dibromo organoselenanes derivatives than the dichloro analogues. In addition, the present data suggest the use of hypervalent selenium compounds as novel motifs for cysteine proteases inhibitors.Uma série de organosselenanas foi sintetizada utilizando-se uma metodologia quimio-enzimática. Estas organosselenanas apresentam variações na estereoquímica e no halogênio ligado ao átomo de selênio. Devido à reação característica envolvendo compostos de selênio e tióis, estas organosselenanas foram avaliadas como inibidores de cisteíno proteases (catepsinas V e S). As constantes de inibição de segunda-ordem mostraram que a catepsina S é inibida mais rapidamente do que a catepsina V. Pode-se observar que as organosselenanas dibromadas são inibidores mais potentes do que as dicloradas. Desta forma, os resultados obtidos mostram que compostos hipervalentes de selênio podem ser aplicados como inibidores de cisteíno proteases
    • …
    corecore