646 research outputs found

    Greenresilient experimental site visit: Innovative greenhouse practices in France

    Get PDF
    The Greenresilient project organised a visit on July 9th to the experimental sites in Avignon (France) to discuss the latest research about crop mixtures, functional biodiversity and mulching in the framework of organic greenhouse production

    Prospects, challenges and perspectives in harnessing natural selection to solve the 'varroa problem' of honey bees.

    Get PDF
    Honey bees, Apis mellifera, of European origin are major pollinators of crops and wild flora. Their endemic and exported populations are threatened by a variety of abiotic and biotic factors. Among the latter, the ectoparasitic mite Varroa destructor is the most important single cause behind colony mortality. The selection of mite resistance in honey bee populations has been deemed a more sustainable solution to its control than varroacidal treatments. Because natural selection has led to the survival of some European and African honey bee populations to V. destructor infestations, harnessing its principles has recently been highlighted as a more efficient way to provide honey bee lineages that survive infestations when compared with conventional selection on resistance traits against the parasite. However, the challenges and drawbacks of harnessing natural selection to solve the varroa problem have only been minimally addressed. We argue that failing to consider these issues could lead to counterproductive results, such as increased mite virulence, loss of genetic diversity reducing host resilience, population collapses or poor acceptance by beekeepers. Therefore, it appears timely to evaluate the prospects for the success of such programmes and the qualities of the populations obtained. After reviewing the approaches proposed in the literature and their outcomes, we consider their advantages and drawbacks and propose perspectives to overcome their limitations. In these considerations, we not only reflect on the theoretical aspects of host-parasite relationships but also on the currently largely neglected practical constraints, that is, the requirements for productive beekeeping, conservation or rewilding objectives. To optimize natural selection-based programmes towards these objectives, we suggest designs based on a combination of nature-driven phenotypic differentiation and human-directed selection of traits. Such a dual strategy aims at allowing field-realistic evolutionary approaches towards the survival of V. destructor infestations and the improvement of honey bee health

    New reference genomes of honey bee-associated bacteria Paenibacillus melissococcoides, Paenibacillus dendritiformis, and Paenibacillus thiaminolyticus.

    Get PDF
    We sequenced the genomes of recently discovered Paenibacillus melissococcoides (CCOS 2000) and of the type strains of closely related P. thiaminolyticus (DSM 7262) and P. dendritiformis (LMG 21716). The three genomes set the basis to unambiguous diagnostic of these honey bee associated Paenibacillus bacteria

    Advances and perspectives in selecting resistance traits against the parasitic mite Varroa destructor in honey bees.

    Get PDF
    In spite of the implementation of control strategies in honey bee (Apis mellifera) keeping, the invasive parasitic mite Varroa destructor remains one of the main causes of colony losses in numerous countries. Therefore, this parasite represents a serious threat to beekeeping and agro-ecosystems that benefit from the pollination services provided by honey bees. To maintain their stocks, beekeepers have to treat their colonies with acaricides every year. Selecting lineages that are resistant to infestations is deemed to be a more sustainable approach. Over the last three decades, numerous selection programs have been initiated to improve the host-parasite relationship and to support honey bee survival in the presence of the parasite without the need for acaricide treatments. Although resistance traits have been included in the selection strategy of honey bees, it has not been possible to globally solve the V. destructor problem. In this study, we review the literature on the reasons that have potentially limited the success of such selection programs. We compile the available information to assess the relevance of selected traits and the potential environmental effects that distort trait expression and colony survival. Limitations to the implementation of these traits in the field are also discussed. Improving our knowledge of the mechanisms underlying resistance to V. destructor to increase trait relevance, optimizing selection programs to reduce environmental effects, and communicating selection outcomes are all crucial to efforts aiming at establishing a balanced relationship between the invasive parasite and its new host

    Brood comb as a humidity buffer in honeybee nests

    Get PDF
    Adverse environmental conditions can be evaded, tolerated or modified in order for an organism to survive. During their development, some insect larvae spin cocoons which, in addition to protecting their occupants against predators, modify microclimatic conditions, thus facilitating thermoregulation or reducing evaporative water loss. Silk cocoons are spun by honeybee (Apis mellifera) larvae and subsequently incorporated into the cell walls of the wax combs in which they develop. The accumulation of this hygroscopic silk in the thousands of cells used for brood rearing may significantly affect nest homeostasis by buffering humidity fluctuations. This study investigates the extent to which the comb may influence homeostasis by quantifying the hygroscopic capacity of the cocoons spun by honeybee larvae. When comb containing cocoons was placed at high humidity, it absorbed 11% of its own mass in water within 4days. Newly drawn comb composed of hydrophobic wax and devoid of cocoons absorbed only 3% of its own mass. Therefore, the accumulation of cocoons in the comb may increase brood survivorship by maintaining a high and stable humidity in the cell

    Atypical viral and parasitic pattern in Algerian honey bee subspecies Apis mellifera intermissa and A. m. sahariensis

    Get PDF
    International audienceAbstractUnusually high losses of honey bee colonies are reported in many regions of the world, but little data is available concerning the status of honey bee stocks in Africa. However, the situation on this continent, where beekeeping is weakly developed and where the wild population of the pollinator remains large, can give us an insight on the causes of increased mortalities elsewhere. In this study, we evaluate the health status of Apis mellifera intermissa and A. m. sahariensis populations inhabiting the north and the south of Algeria, respectively. We report few colony losses associated with an atypical pattern of prevalence for common honey bee parasites and pathogens. The presence or absence of these risk factors is discussed in relation to the occurrence of local and global colony losses to contribute to our understanding of how honey bee pathogens and parasite impact this pollinator’s health

    Étude de la précipitation du silicate de magnésium amorphe assistée par ultrasons : synthèse, caractérisation et modélisation

    Get PDF
    Le talc naturel est utilisé en tant que charge de haute performance des matrices polymères, car il permet d'améliorer leurs propriétés mécaniques. Pour cela, la dispersion de la charge dans la matrice doit être de qualité, ce qui implique que les particules soient nanométriques. Or, obtenir des particules nanométriques par broyage s'avère coûteux énergétiquement et économiquement. L'étude d'une opération de précipitation a conduit à la synthèse de silicate de magnésium amorphe constitué de particules primaires nanométriques. L'analyse de surface du solide par chromatographie gazeuse inverse a été employée afin de prédire les interactions entre le solide et la matrice polymère. La constante d'équilibre du solide amorphe et les vitesses de cristallisation ont pu être identifiées après modélisation des équilibres chimiques. ABSTRACT : Natural talc is used as an high performance filler in polymer matrices because it enables to improve mechanical properties. In order to improve these properties, a good-quality dispersion of the filler in the polymer matrix is necessary, that involves particles being nano-sized. However, getting nano-sized particles by milling processes is expensive and very energetic. The study of a precipitation operation has led to the synthesis of amorphous magnesium silicate whose primary particles are nano-sized. Solid surface analysis by inverse gas chromatography has been made in order to predict interactions between solid and polymer matrix. Equilibrium constant of amorphous solid and crystallization rates have been identified after modelling of chemical equilibria
    corecore