19 research outputs found

    Frustration Effects in Antiferromagnetic FCC Heisenberg Films

    Full text link
    We study the effects of frustration in an antiferromagnetic film of FCC lattice with Heisenberg spin model including an Ising-like anisotropy. Monte Carlo (MC) simulations have been used to study thermodynamic properties of the film. We show that the presence of the surface reduces the ground state (GS) degeneracy found in the bulk. The GS is shown to depend on the surface in-plane interaction JsJ_s with a critical value at which ordering of type I coexists with ordering of type II. Near this value a reentrant phase is found. Various physical quantities such as layer magnetizations and layer susceptibilities are shown and discussed. The nature of the phase transition is also studied by histogram technique. We have also used the Green's function (GF) method for the quantum counterpart model. The results at low-TT show interesting effects of quantum fluctuations. Results obtained by the GF method at high TT are compared to those of MC simulations. A good agreement is observed.Comment: 11 pages, 19 figures, submitted to J. Phys.: Condensed Matte

    Effects of Frustrated Surface in Heisenberg Thin Films

    Full text link
    We study by extensive Monte Carlo (MC) simulations and analytical Green function (GF) method effects of frustrated surfaces on the properties of thin films made of stacked triangular layers of atoms bearing Heisenberg spins with an Ising-like interaction anisotropy. We suppose that the in-plane surface interaction JsJ_s can be antiferromagnetic or ferromagnetic while all other interactions are ferromagnetic. We show that the ground-state spin configuration is non linear when JsJ_s is lower than a critical value JscJ_s^c. The film surfaces are then frustrated. In the frustrated case, there are two phase transitions related to disorderings of surface and interior layers. There is a good agreement between MC and GF results. In addition, we show from MC histogram calculation that the value of the ratio of critical exponents γ/ν\gamma/\nu of the observed transitions is deviated from the values of two and three Ising universality classes. The origin of this deviation is discussed with general physical arguments.Comment: 9 pages, 16 figure

    Rapid evolution of virulence and drug resistance in the emerging zoonotic pathogen Streptococcus suis

    Get PDF
    Background: Streptococcus suis is a zoonotic pathogen that infects pigs and can occasionally cause serious infections in humans. S. suis infections occur sporadically in human Europe and North America, but a recent major outbreak has been described in China with high levels of mortality. The mechanisms of S. suis pathogenesis in humans and pigs are poorly understood. Methodology/Principal Findings: The sequencing of whole genomes of S. suis isolates provides opportunities to investigate the genetic basis of infection. Here we describe whole genome sequences of three S. suis strains from the same lineage: one from European pigs, and two from human cases from China and Vietnam. Comparative genomic analysis was used to investigate the variability of these strains. S. suis is phylogenetically distinct from other Streptococcus species for which genome sequences are currently available. Accordingly, ,40% of the ,2 Mb genome is unique in comparison to other Streptococcus species. Finer genomic comparisons within the species showed a high level of sequence conservation; virtually all of the genome is common to the S. suis strains. The only exceptions are three ,90 kb regions, present in the two isolates from humans, composed of integrative conjugative elements and transposons. Carried in these regions are coding sequences associated with drug resistance. In addition, small-scale sequence variation has generated pseudogenes in putative virulence and colonization factors. Conclusions/Significance: The genomic inventories of genetically related S. suis strains, isolated from distinct hosts and diseases, exhibit high levels of conservation. However, the genomes provide evidence that horizontal gene transfer has contributed to the evolution of drug resistance

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Applying Machine Learning to Identify Anti-Vaccination Tweets during the COVID-19 Pandemic

    No full text
    Anti-vaccination attitudes have been an issue since the development of the first vaccines. The increasing use of social media as a source of health information may contribute to vaccine hesitancy due to anti-vaccination content widely available on social media, including Twitter. Being able to identify anti-vaccination tweets could provide useful information for formulating strategies to reduce anti-vaccination sentiments among different groups. This study aims to evaluate the performance of different natural language processing models to identify anti-vaccination tweets that were published during the COVID-19 pandemic. We compared the performance of the bidirectional encoder representations from transformers (BERT) and the bidirectional long short-term memory networks with pre-trained GLoVe embeddings (Bi-LSTM) with classic machine learning methods including support vector machine (SVM) and naïve Bayes (NB). The results show that performance on the test set of the BERT model was: accuracy = 91.6%, precision = 93.4%, recall = 97.6%, F1 score = 95.5%, and AUC = 84.7%. Bi-LSTM model performance showed: accuracy = 89.8%, precision = 44.0%, recall = 47.2%, F1 score = 45.5%, and AUC = 85.8%. SVM with linear kernel performed at: accuracy = 92.3%, Precision = 19.5%, Recall = 78.6%, F1 score = 31.2%, and AUC = 85.6%. Complement NB demonstrated: accuracy = 88.8%, precision = 23.0%, recall = 32.8%, F1 score = 27.1%, and AUC = 62.7%. In conclusion, the BERT models outperformed the Bi-LSTM, SVM, and NB models in this task. Moreover, the BERT model achieved excellent performance and can be used to identify anti-vaccination tweets in future studies

    Anti-vaccination attitude trends during the COVID-19 pandemic: A machine learning-based analysis of tweets

    No full text
    Objective: Vaccine hesitancy has been ranked by the World Health Organization among the top 10 threats to global health. With a surge in misinformation and conspiracy theories against vaccination observed during the COVID-19 pandemic, attitudes toward vaccination may be worsening. This study investigates trends in anti-vaccination attitudes during the COVID-19 pandemic and within the United States, Canada, the United Kingdom, and Australia. Methods: Vaccine-related English tweets published between 1 January 2020 and 27 June 2021 were used. A deep learning model using a dynamic word embedding method, Bidirectional Encoder Representations from Transformers (BERTs), was developed to identify anti-vaccination tweets. The classifier achieved a micro F1 score of 0.92. Time series plots and country maps were used to examine vaccination attitudes globally and within countries. Results: Among 9,352,509 tweets, 232,975 (2.49%) were identified as anti-vaccination tweets. The overall number of vaccine-related tweets increased sharply after the implementation of the first vaccination round since November 2020 (daily average of 6967 before vs. 31,757 tweets after 9/11/2020). The number of anti-vaccination tweets increased after conspiracy theories spread on social media. Percentages of anti-vaccination tweets were 3.45%, 2.74%, 2.46%, and 1.86% for the United States, the United Kingdom, Australia, and Canada, respectively. Conclusions: Strategies and information campaigns targeting vaccination misinformation may need to be specifically designed for regions with the highest anti-vaccination Twitter activity and when new vaccination campaigns are initiated
    corecore