42 research outputs found

    Urban agriculture in Senegal: effect of wastewater on the agronomical performance and hygienic quality of tomato and lettuce

    Get PDF
    The use of wastewater in urban agriculture has gained a lot of interest in Senegal. The aim of this works was to assess the effect of wastewater on the agronomical performance of two vegetable crops and the hygienic threats as compared to tap water. We also compared the effect of irrigation mode and the addition of fertilizers. Results showed that there were no significant differences between the two irrigation modes. Thesturdiness at 2 months had a positive effect on the number of plant (tomato) at the harvest, the yield and fruit average weight. Considering the following parameters studied (overall yield, corrected yield, number of fruit per treatment and fruit average size, there were significant differences between plants (lettuce) treated with tap water and those treated with wastewater. In a chemical point of view, samples from aspersion and draining watering mode treatments were similar in term of their content in heavy metals. On the lettuce, results showed a low presence of worms on crop watered with wastewater. On the other hand, lettuce watered with theaspersion technique contents much more germs of pathogens than those watered in draining mode. As for tomato, there was a total absence of worms and other pathogenic germs in both irrigation modes. This studysuggests that use of wastewater in horticulture with a moderate fertilization and taking into account soil chemistry could be gainful to urban farmers. The study addresses the issue of preliminary studies on the wastewater and soil quality before deciding on the adequate crop to grow

    Will dairy cattle production in West Africa be challenged by heat stress in the future?

    Get PDF
    This study focuses on heat stress conditions for dairy cattle production in West Africa under current and future climatic conditions. After testing the accuracy of the dynamically downscaled climate datasets for simulating the historical daily maximum temperature (Tmax) and relative humidity (RH) in West Africa for 50 meteorological stations, we used the dataset for calculating the temperature-humidity index (THI), i.e., an index indicating heat stress for dairy cattle on a daily scale. Calculations were made for the historical period (1981–2010) using the ERA-Interim reanalysis dataset, and for two future periods (2021–2050 and 2071–2100) using climate predictions of the GFDLESM2M, HadGEM2-ES, and MPI-ESM-MR Global Circulation Models (GCMs) under the RCP4.5 emission scenario. Here, we show that during the period from 1981 to 2010 for > 1/5 of the region of West Africa, the frequency of severe/danger heat events per year, i.e., events that result in significant decreases in productive and reproductive performances, increased from 11 to 29–38 days (significant at 95% confidence level). Most obvious changes were observed for the eastern and southeastern parts. Under future climate conditions periods with severe/danger heat stress events will increase further as compared with the historical period by 5–22% depending on the GCM used. Moreover, the average length of periods with severe/danger heat stress is expected to increase from ~ 3 days in the historical period to ~ 4–7 days by 2021–2050 and even to up to 10 days by 2071–2100. Based on the average results of three GCMs, by 2071–2100, around 22% of dairy cattle population currently living in this area is expected to experience around 70 days more of severe/danger heat stress (compare with the historical period), especially in the southern half of West Africa. The result is alarming, as it shows that dairy production systems in West Africa are jeopardized at large scale by climate change and that depending on the GCMused, milk production might decrease by 200–400 kg/year by 2071–2100 in around 1, 7, or 11%. Our study calls for the development of improved dairy cattle production systems with higher adaptive capacity in order to deal with expected future heat stress conditions

    The WASCAL high-resolution regional climate simulation ensemble for West Africa: concept, dissemination and assessment

    Get PDF
    Climate change and constant population growth pose severe challenges to 21st century rural Africa. Within the framework of the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL), an ensemble of high-resolution regional climate change scenarios for the greater West African region is provided to support the development of effective adaptation and mitigation measures. This contribution presents the overall concept of the WASCAL regional climate simulations, as well as detailed information on the experimental design, and provides information on the format and dissemination of the available data. All data are made available to the public at the CERA long-term archive of the German Climate Computing Center (DKRZ) with a subset available at the PANGAEA Data Publisher for Earth & Environmental Science portal (https://doi.pangaea.de/10.1594/PANGAEA.880512). A brief assessment of the data are presented to provide guidance for future users. Regional climate projections are generated at high (12 km) and intermediate (60 km) resolution using the Weather Research and Forecasting Model (WRF). The simulations cover the validation period 1980–2010 and the two future periods 2020–2050 and 2070–2100. A brief comparison to observations and two climate change scenarios from the Coordinated Regional Downscaling Experiment (CORDEX) initiative is presented to provide guidance on the data set to future users and to assess their climate change signal. Under the RCP4.5 (Representative Concentration Pathway 4.5) scenario, the results suggest an increase in temperature by 1.5 °C at the coast of Guinea and by up to 3 °C in the northern Sahel by the end of the 21st century, in line with existing climate projections for the region. They also project an increase in precipitation by up to 300 mm per year along the coast of Guinea, by up to 150 mm per year in the Soudano region adjacent in the north and almost no change in precipitation in the Sahel. This stands in contrast to existing regional climate projections, which predict increasingly drier conditions. The high spatial and temporal resolution of the data, the extensive list of output variables, the large computational domain and the long time periods covered make this data set a unique resource for follow-up analyses and impact modelling studies over the greater West African region. The comprehensive documentation and standardisation of the data facilitate and encourage their use within and outside of the WASCAL community

    Multivariate bias‐correction of high‐resolution regional climate change simulations for West Africa: performance and climate change implications

    Get PDF
    A multivariate bias correction based on N‐dimensional probability density function transform (MBCn) technique is applied to four different high‐resolution regional climate change simulations and key meteorological variables, namely precipitation, mean near‐surface air temperature, near‐surface maximum air temperature, near‐surface minimum air temperature, surface downwelling solar radiation, relative humidity, and wind speed. The impact of bias‐correction on the historical (1980–2005) period, the inter‐variable relationships, and the measures of spatio‐temporal consistency are investigated. The focus is on the discrepancies between the original and the bias‐corrected results over five agro‐ecological zones. We also evaluate relevant indices for agricultural applications such as climate extreme indices, under current and future (2020–2050) climate change conditions based on the RCP4.5. Results show that MBCn successfully corrects the seasonal biases in spatial patterns and intensities for all variables, their intervariable correlation, and the distributions of most of the analyzed variables. Relatively large bias reductions during the historical period give indication of possible benefits of MBCn when applied to future scenarios. Although the four regional climate models do not agree on the same positive/negative sign of the change of the seven climate variables for all grid points, the model ensemble mean shows a statistically significant change in rainfall, relative humidity in the Northern zone and wind speed in the Coastal zone of West Africa and increasing maximum summer temperature up to 2°C in the Sahara

    Multivariate Bias‐Correction of High‐Resolution Regional Climate Change Simulations for West Africa: Performance and Climate Change Implications

    Get PDF
    A multivariate bias correction based on N-dimensional probability density function transform (MBCn) technique is applied to four different high-resolution regional climate change simulations and key meteorological variables, namely precipitation, mean near-surface air temperature, near-surface maximum air temperature, near-surface minimum air temperature, surface downwelling solar radiation, relative humidity, and wind speed. The impact of bias-correction on the historical (1980–2005) period, the inter-variable relationships, and the measures of spatio-temporal consistency are investigated. The focus is on the discrepancies between the original and the bias-corrected results over five agro-ecological zones. We also evaluate relevant indices for agricultural applications such as climate extreme indices, under current and future (2020–2050) climate change conditions based on the RCP4.5. Results show that MBCn successfully corrects the seasonal biases in spatial patterns and intensities for all variables, their intervariable correlation, and the distributions of most of the analyzed variables. Relatively large bias reductions during the historical period give indication of possible benefits of MBCn when applied to future scenarios. Although the four regional climate models do not agree on the same positive/negative sign of the change of the seven climate variables for all grid points, the model ensemble mean shows a statistically significant change in rainfall, relative humidity in the Northern zone and wind speed in the Coastal zone of West Africa and increasing maximum summer temperature up to 2°C in the Sahara

    Systèmes à libération contrôlée pH-dépendants de principes actifs hydrophobes à partir d’oléogels

    Get PDF
    Les rhumatismes inflammatoires chroniques sont une cause importante d'invalidité dans le monde entier. De ce fait, les affections rhumatismales chroniques font peser une lourde charge sociale et économique sur toutes les sociétés, pas seulement sur celles où l’espérance de vie est élevée. L’objectif principal de ce travail était d’étudier le profil de libération pH-dépendante de principes actifs hydrophobes à partir d’oléogels oraux et/ou cutanés. La formulation des oléogels a été réalisée selon une méthode sol-gel, reproductible à grande échelle. La caractérisation et le suivi dans le temps ont montré une bonne stabilité des oléogels. Les valeurs de pH des oléogels étaient globalement acides (entre 4,3 et 5,8) et dépendaient de la quantité de gélifiant utilisée. Les études de libération du kétoprofène, principe actif hydrophobe, en fonction du pH des milieux de dissolution ont montré des profils de libération d’une cinétique du premier ordre d’équation =+. avec des coefficients de détermination proches de 1 (milieux à pH égal à 1,2 et 5,5). Une meilleure libération du kétoprofène a été obtenue dans un milieu intestinal simulé (pH égal à 6,8) pour les formulations qui présentaient déjà une saturation en milieu gastrique simulé (pH égal à 1,2). Cette étude qui a permis de formuler, d’évaluer et de modéliser le profil de libération du kétoprofène à partir d’oléogels peut constituer une étape importante dans un objectif de souveraineté thérapeutique des pays d’Afrique subsaharienne notamment le Sénégal.Mots clés : Oléogels, rhumatismes inflammatoires chroniques, kétoprofène, libération contrôlée, pH-dépendant.   English Title: pH-dependent controlled release systems of hydrophobic active pharmaceutical ingredients from oleogels Chronic inflammatory rheumatism is a major cause of disability around the world. As a result, chronic rheumatic diseases place a heavy social and economic burden on all societies, not just those with high life expectancy. The main objective of this work was to control the pH-dependent release of hydrophobic active pharmaceutical ingredients from oral and / or skin oleogels. The formulation of the oleogels was carried out using a sol-gel large-scale reproducible method. Characterization and monitoring over time have shown good stability of the oleogels. The pH values of the oleogels were overall acid (between 4.3 and 5.8) and depended on the amount of gelling agent used. The release studies of ketoprofen, a hydrophobic active pharmaceutical ingredient, as a function of the pH of the dissolution media have shown release profiles of first-order kinetics of equation =+. with coefficients of determination close to 1 (media at pH equal to 1.2 and 5.5). Better release of ketoprofen was obtained in simulated intestinal medium (pH equal to 6.8) for formulations which already exhibited saturation in simulated gastric medium (pH equal to 1.2). This study, which made it possible to formulate, evaluate and model the release profile of ketoprofen from oleogels, may constitute an important step in an objective of therapeutic sovereignty of the countries of sub-Saharan Africa, particularly Senegal.Keywords: oleogels - chronic inflammatory rheumatism - ketoprofen - controlled release – pH-dependent

    Improving fetal dystocia management using simulation in Senegal: midterm results

    Get PDF
    Background: Maternal mortality, which constitutes the extreme point of the existing inequality between women in poor and rich countries, remains very high in Africa south of the Sahara. The objective of this study was to introduce a new training approach in Emergency Obstetric and Neonatal Care (EmONC) entered in Senegal to strengthen the skills of healthcare providers.Methods: The approach was based on the skills training using the so-called "humanist" method and "lifesaving skills". Simulated practice took place in the classroom through thirteen clinical stations summarizing the clinical skills on EmONC. The evaluation was done in all phases and the results were recorded in a database to document the progress of each learner.Results: With this approach, 432 providers were trained in 10 months. The increase in technical achievements of each participant was documented through the database. The combination of training based on the model “learning by doing” has ensured learning and mastering all EmONC skills and reduced missed learning opportunities as observed in former EmONC trainings.Conclusions: The impact of training on EmONC indicators and the introduction of this learning modality in basic training are the two major challenges in terms of prospects

    Low-cost adaptation options to support green growth in agriculture, water resources, and coastal zones

    Get PDF
    The regional climate as it is now and in the future will put pressure on investments in sub-Saharan Africa in water resource management, fisheries, and other crop and livestock production systems. Changes in oceanic characteristics across the Atlantic Ocean will result in remarkable vulnerability of coastal ecology, littorals, and mangroves in the middle of the twenty-first century and beyond. In line with the countries' objectives of creating a green economy that allows reduced greenhouse gas emissions, improved resource efficiency, and prevention of biodiversity loss, we identify the most pressing needs for adaptation and the best adaptation choices that are also clean and affordable. According to empirical data from the field and customized model simulation designs, the cost of these adaptation measures will likely decrease and benefit sustainable green growth in agriculture, water resource management, and coastal ecosystems, as hydroclimatic hazards such as pluviometric and thermal extremes become more common in West Africa. Most of these adaptation options are local and need to be scaled up and operationalized for sustainable development. Governmental sovereign wealth funds, investments from the private sector, and funding from global climate funds can be used to operationalize these adaptation measures. Effective legislation, knowledge transfer, and pertinent collaborations are necessary for their success

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore