118 research outputs found

    direct comparison of M1-AQP4-DNA-transfected cells with leaky scanning versus M23-AQP4-DNA-transfected cells as antigenic substrate

    Get PDF
    Background Neuromyelitis optica (NMO, Devic syndrome) is associated with antibodies to aquaporin-4 (NMO-IgG/AQP4-Ab) in the majority of cases. NMO- IgG/AQP4-Ab seropositivity in patients with NMO and its spectrum disorders has important differential diagnostic, prognostic and therapeutic implications. So-called cell-based assays (CBA) are thought to provide the best AQP4-Ab detection rates. Objective To compare directly the AQP4-IgG detection rates of the currently most widely used commercial CBA, which employs cells transfected with a full-length (M1)-human AQP4 DNA in a fashion that allows leaky scanning (LS) and thus expression of M23-AQP4 in addition to M1-AQP, to that of a newly developed CBA from the same manufacturer employing cells transfected with human M23-AQP4-DNA. Methods Results from 368 serum samples that had been referred for routine AQP4-IgG determination and had been tested in parallel in the two assays were compared. Results Seventy-seven out of 368 samples (20.9%) were positive for NMO-IgG/AQP4-Ab in at least one assay. Of these, 73 (94.8%) were positive in both assays. A single sample (1.3%) was exclusively positive in the novel assay; three samples (3.9%) were unequivocally positive only in the ‘classic’ assay due to high background intensity in the novel assay. Both median fluorescence intensity and background intensity were higher in the new assay. Conclusions This large study did not reveal significant differences in AQP4-IgG detection rates between the ‘classic’ CBA and a new M23-DNA-based CBA. Importantly, our results largely re-affirm the validity of previous studies that had used the ‘classic’ AQP4-CBA to establish NMO-IgG/AQP4-Ab seropositivity rates in NMO and in a variety of NMO spectrum disorders

    Aquaporin-4 antibody testing: direct comparison of M1-AQP4-DNA-transfected cells with leaky scanning versus M23-AQP4-DNA-transfected cells as antigenic substrate

    Get PDF
    Background: Neuromyelitis optica (NMO, Devic syndrome) is associated with antibodies to aquaporin-4 (NMO-IgG/AQP4-Ab) in the majority of cases. NMO-IgG/AQP4-Ab seropositivity in patients with NMO and its spectrum disorders has important differential diagnostic, prognostic and therapeutic implications. So-called cell-based assays (CBA) are thought to provide the best AQP4-Ab detection rates. Objective: To compare directly the AQP4-IgG detection rates of the currently most widely used commercial CBA, which employs cells transfected with a full-length (M1)-human AQP4 DNA in a fashion that allows leaky scanning (LS) and thus expression of M23-AQP4 in addition to M1-AQP, to that of a newly developed CBA from the same manufacturer employing cells transfected with human M23-AQP4-DNA. Methods: Results from 368 serum samples that had been referred for routine AQP4-IgG determination and had been tested in parallel in the two assays were compared. Results: Seventy-seven out of 368 samples (20.9%) were positive for NMO-IgG/AQP4-Ab in at least one assay. Of these, 73 (94.8%) were positive in both assays. A single sample (1.3%) was exclusively positive in the novel assay; three samples (3.9%) were unequivocally positive only in the ‘classic’ assay due to high background intensity in the novel assay. Both median fluorescence intensity and background intensity were higher in the new assay. Conclusions: This large study did not reveal significant differences in AQP4-IgG detection rates between the ‘classic’ CBA and a new M23-DNA-based CBA. Importantly, our results largely re-affirm the validity of previous studies that had used the ‘classic’ AQP4-CBA to establish NMO-IgG/AQP4-Ab seropositivity rates in NMO and in a variety of NMO spectrum disorders

    Prion Protein Paralog Doppel Protein Interacts with Alpha-2-Macroglobulin: A Plausible Mechanism for Doppel-Mediated Neurodegeneration

    Get PDF
    Doppel protein (Dpl) is a paralog of the cellular form of the prion protein (PrPC), together sharing common structural and biochemical properties. Unlike PrPC, which is abundantly expressed throughout the central nervous system (CNS), Dpl protein expression is not detectable in the CNS. Interestingly, its ectopic expression in the brain elicits neurodegeneration in transgenic mice. Here, by combining native isoelectric focusing plus non-denaturing polyacrylamide gel electrophoresis and mass spectrometry analysis, we identified two Dpl binding partners: rat alpha-1-inhibitor-3 (α1I3) and, by sequence homology, alpha-2-macroglobulin (α2M), two known plasma metalloproteinase inhibitors. Biochemical investigations excluded the direct interaction of PrPC with either α1I3 or α2M. Nevertheless, enzyme-linked immunosorbent assays and surface plasmon resonance experiments revealed a high affinity binding occurring between PrPC and Dpl. In light of these findings, we suggest a mechanism for Dpl-induced neurodegeneration in mice expressing Dpl ectopically in the brain, linked to a withdrawal of natural inhibitors of metalloproteinase such as α2M. Interestingly, α2M has been proven to be a susceptibility factor in Alzheimer's disease, and as our findings imply, it may also play a relevant role in other neurodegenerative disorders, including prion diseases

    Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain

    Get PDF
    Epstein-Barr virus (EBV), a ubiquitous B-lymphotropic herpesvirus, has been associated with multiple sclerosis (MS), an inflammatory disease of the central nervous system (CNS), but direct proof of its involvement in the disease is still missing. To test the idea that MS might result from perturbed EBV infection in the CNS, we investigated expression of EBV markers in postmortem brain tissue from MS cases with different clinical courses. Contrary to previous studies, we found evidence of EBV infection in a substantial proportion of brain-infiltrating B cells and plasma cells in nearly 100% of the MS cases examined (21 of 22), but not in other inflammatory neurological diseases. Ectopic B cell follicles forming in the cerebral meninges of some cases with secondary progressive MS were identified as major sites of EBV persistence. Expression of viral latent proteins was regularly observed in MS brains, whereas viral reactivation appeared restricted to ectopic B cell follicles and acute lesions. Activation of CD8+ T cells with signs of cytotoxicity toward plasma cells was also noted at sites of major accumulations of EBV-infected cells. Whether homing of EBV-infected B cells to the CNS is a primary event in MS development or the consequence of a still unknown disease-related process, we interpret these findings as evidence that EBV persistence and reactivation in the CNS play an important role in MS immunopathology

    Cerebrospinal fluid antibodies to aquaporin-4 in neuromyelitis optica and related disorders: frequency, origin, and diagnostic relevance

    Get PDF
    In 70-80% of cases, neuromyelitis optica (NMO) is associated with highly specific serum auto-antibodies to aquaporin-4 (termed AQP4-Ab or NMO-IgG). Recent evidence strongly suggests that AQP4-Ab are directly involved in the immunopathogenesis of NMO

    Kappa Index Versus CSF Oligoclonal Bands in Predicting Multiple Sclerosis and Infectious/Inflammatory CNS Disorders

    Get PDF
    Cerebrospinal fluid (CSF) kappa free light chains (KFLC) are gaining increasing interest as markers of intrathecal immunoglobulin synthesis. The main aim of this study was to assess the diagnostic accuracy (AUC) of the kappa index (CSF/serum KFLC divided by the CSF/serum albumin ratio) compared to CSF oligoclonal IgG bands (OCB) in predicting Multiple Sclerosis (MS) or a central nervous system infectious/inflammatory disorder (CNSID)

    COVID-19 in patients with Myasthenia Gravis: epidemiology and disease course

    Get PDF
    COVID-19, a disease caused by SARS-CoV-2 infection, has become a global pandemic. Patients with myasthenia gravis (MG), often treated with immunosuppressants, might be at higher risk of developing COVID-19 and of demonstrating a severe disease course. We aimed to study prevalence and describe features of COVID-19 in MG patients

    Frequency and syndrome specificity of antibodies to aquaporin-4 in neurological patients with rheumatic disorders

    Get PDF
    Background: A new autoantibody (termed NMO-IgG, or AQP4-Ab) has recently been described in patients with neuromyelitis optica (NMO) and its formes frustes, longitudinally extensive transverse myelitis (LETM) and recurrent optic neuritis (rON). However, AQP4-Ab has been found also in patients with co-existing rheumatic diseases such as systemic lupus erythematosus (SLE) or Sjögren’s syndrome (SS), conditions which are characterized by broad, polyspecific B cell activation. Objectives: In this study, we aimed at evaluating the syndrome specificity and frequency of AQP4-Ab in patients with rheumatic diseases and neurological symptoms. Methods: For this purpose, serum samples from 109 neurological patients with established connective tissue disorders (CTD) (n = 54), possible CTD (n = 42), or vasculitis (n = 13) were analysed for the presence of AQP4-Ab by a cell-based assay employing recombinant human AQP4. Results: AQP4-Ab was detectable in 31/40 (78%) patients with CTD and NMO spectrum disorders (median titre, 1:1000) but in none of the samples obtained from patients with CTD or vasculitis and neurological disorders other than NMO, LETM, or rON (n = 69). Conclusion: The high syndrome specificity of the antibody for neuromyelitis optica spectrum disorders (NMOSDs) in patients with CTD supports the concept of AQP4-Ab being involved in the pathogenesis of these neurological conditions, and argues against AQP4-Ab simply being part of the polyclonal B cell activation generally associated with rheumatic diseases. Moreover, the finding that AQP4-Ab is present in patients with CTD and co-existing NMOSD with approximately the same frequency as in patients without CTD strengthens the case of CTD and AQP4-Ab positive NMOSD representing two co-existing yet distinct entities in the majority of patients

    Аналіз вибіркових даних при оцінюванні наукового потенціалу і характер статистичних властивостей вербальних моделей

    Get PDF
    OBJECTIVE: To determine sensitivity and specificity of a standardized recombinant cell-based indirect immunofluorescence assay (RC-IFA) for anti-Tr antibodies in comparison to a reference procedure. METHODS: Delta/Notch-like epidermal growth factor-related receptor (DNER) was expressed in HEK293 and used as a substrate for RC-IFA. HEK293 control cells expressing CDR2/Yo and CDR2L as well as mock-transfected HEK293 cells were used as controls. Serum samples from 38 patients with anti-Tr antibodies (33 with paraneoplastic cerebellar degeneration [PCD] and Hodgkin lymphoma), 66 patients with anti-Tr-negative PCD, 53 patients with Hodgkin lymphoma without neurologic symptoms, 40 patients with rheumatic diseases, and 42 healthy blood donors were tested for anti-DNER reactivity in the RC-IFA. In addition, RC-IFA results were compared to those from a commercial tissue-based IFA using monkey cerebellum. RESULTS: Using the RC-IFA, anti-DNER was detected in all anti-Tr-positive patients but in none of the controls (sensitivity 100%, 95% confidence interval [CI] 92.8%-100%; specificity 100%, 95% CI 98.7%-100%). In comparison, anti-Tr was not detected in 4 samples with low-titer autoantibodies using the commercial tissue-based assay. Preadsorption of sera with either recombinant full-length DNER or its extracellular domain selectively abolished anti-Tr reactivity. CONCLUSION: Anti-Tr antibodies bind to the extracellular domain of DNER and can be detected by RC-IFA using HEK293 cells expressing the recombinant receptor. The new method performs better than a frequently used commercial tissue-based indirect immunofluorescence assay (IFA) in samples with low-titer antibodies. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that RC-IFA accurately detects anti-Tr as compared to conventional IFA

    MOG encephalomyelitis: international recommendations on diagnosis and antibody testing

    Get PDF
    Over the past few years, new-generation cell-based assays have demonstrated a robust association of autoantibodies to full-length human myelin oligodendrocyte glycoprotein (MOG-IgG) with (mostly recurrent) optic neuritis, myelitis and brainstem encephalitis, as well as with acute disseminated encephalomyelitis (ADEM)-like presentations. Most experts now consider MOG-IgG-associated encephalomyelitis (MOG-EM) a disease entity in its own right, immunopathogenetically distinct from both classic multiple sclerosis (MS) and aquaporin-4 (AQP4)-IgG-positive neuromyelitis optica spectrum disorders (NMOSD). Owing to a substantial overlap in clinicoradiological presentation, MOG-EM was often unwittingly misdiagnosed as MS in the past. Accordingly, increasing numbers of patients with suspected or established MS are currently being tested for MOG-IgG. However, screening of large unselected cohorts for rare biomarkers can significantly reduce the positive predictive value of a test. To lessen the hazard of overdiagnosing MOG-EM, which may lead to inappropriate treatment, more selective criteria for MOG-IgG testing are urgently needed. In this paper, we propose indications for MOG-IgG testing based on expert consensus. In addition, we give a list of conditions atypical for MOG-EM ('red flags') that should prompt physicians to challenge a positive MOG-IgG test result. Finally, we provide recommendations regarding assay methodology, specimen sampling and data interpretation
    corecore