12 research outputs found

    Adventures in Researching: Exploring Cordoba and Montevideo

    Get PDF

    A Robust Solver for a Second Order Mixed Finite Element Method for the Cahn-Hilliard Equation

    Get PDF
    We develop a robust solver for a second order mixed finite element splitting scheme for the Cahn-Hilliard equation. This work is an extension of our previous work in which we developed a robust solver for a first order mixed finite element splitting scheme for the Cahn-Hilliard equaion. The key ingredient of the solver is a preconditioned minimal residual algorithm (with a multigrid preconditioner) whose performance is independent of the spacial mesh size and the time step size for a given interfacial width parameter. The dependence on the interfacial width parameter is also mild.Comment: 17 pages, 3 figures, 4 tables. arXiv admin note: substantial text overlap with arXiv:1709.0400

    Convergence Analysis and Error Estimates for a Second Order Accurate Finite Element Method for the Cahn-Hilliard-Navier-Stokes System

    Get PDF
    In this paper, we present a novel second order in time mixed finite element scheme for the Cahn-Hilliard-Navier-Stokes equations with matched densities. The scheme combines a standard second order Crank-Nicholson method for the Navier-Stokes equations and a modification to the Crank-Nicholson method for the Cahn-Hilliard equation. In particular, a second order Adams-Bashforth extrapolation and a trapezoidal rule are included to help preserve the energy stability natural to the Cahn-Hilliard equation. We show that our scheme is unconditionally energy stable with respect to a modification of the continuous free energy of the PDE system. Specifically, the discrete phase variable is shown to be bounded in ℓ∞(0,T;L∞)\ell^\infty \left(0,T;L^\infty\right) and the discrete chemical potential bounded in ℓ∞(0,T;L2)\ell^\infty \left(0,T;L^2\right), for any time and space step sizes, in two and three dimensions, and for any finite final time TT. We subsequently prove that these variables along with the fluid velocity converge with optimal rates in the appropriate energy norms in both two and three dimensions.Comment: 33 pages. arXiv admin note: text overlap with arXiv:1411.524

    A robust solver for a second order mixed finite element method for the Cahn–Hilliard equation

    Get PDF
    We develop a robust solver for a second order mixed finite element splitting scheme for the Cahn–Hilliard equation. This work is an extension of our previous work in which we developed a robust solver for a first order mixed finite element splitting scheme for the Cahn–Hilliard equation. The key ingredient of the solver is a preconditioned minimal residual algorithm (with a multigrid preconditioner) whose performance is independent of the spatial mesh size and the time step size for a given interfacial width parameter. The dependence on the interfacial width parameter is also mild

    Numerical Analysis of Convex Splitting Schemes for Cahn-Hilliard and Coupled Cahn-Hilliard-Fluid-Flow Equations

    Get PDF
    This dissertation investigates numerical schemes for the Cahn-Hilliard equation and the Cahn-Hilliard equation coupled with a Darcy-Stokes flow. Considered independently, the Cahn-Hilliard equation is a model for spinodal decomposition and domain coarsening. When coupled with a Darcy-Stokes flow, the resulting system describes the flow of a very viscous block copolymer fluid. Challenges in creating numerical schemes for these equations arise due to the nonlinear nature and high derivative order of the Cahn-Hilliard equation. Further challenges arise during the coupling process as the coupling terms tend to be nonlinear as well. The numerical schemes presented herein preserve the energy dissipative structure of the Cahn- Hilliard equation while maintaining unique solvability and optimal error bounds. Specifically, we devise and analyze two mixed finite element schemes: a first order in time numerical scheme for a modified Cahn-Hilliard equation coupled with a non- steady Darcy-Stokes flow and a second order in time numerical scheme for the Cahn- Hilliard equation in two and three dimensions. The time discretizations are based on a convex splitting of the energy of the systems. We prove that our schemes are unconditionally energy stable with respect to a spatially discrete analogue of the continuous free energies and unconditionally uniquely solvable. For each system, we prove that the discrete phase variable is essentially bounded in both time and space with respect to the Lebesque integral and the discrete chemical potential is Lesbegue square integrable in space and essentially bounded in time. We show these bounds are completely independent of the time and space step sizes in two and three dimensions. We subsequently prove that these variables converge with optimal rates in the appropriate energy norms. The analyses included in this dissertation will provide a bridge to the development of stable, efficient, and optimally convergent numerical schemes for more robust and descriptive coupled Cahn-Hilliard-Fluid-Flow systems
    corecore