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Abstract In this paper, we present a novel second order in time mixed finite element
scheme for the Cahn-Hilliard—Navier—Stokes equations with matched densities. The
scheme combines a standard second order Crank—Nicolson method for the Navier—
Stokes equations and a modification to the Crank—Nicolson method for the Cahn—
Hilliard equation. In particular, a second order Adams-Bashforth extrapolation and
a trapezoidal rule are included to help preserve the energy stability natural to the
Cahn-Hilliard equation. We show that our scheme is unconditionally energy stable
with respect to a modification of the continuous free energy of the PDE system.
Specifically, the discrete phase variable is shown to be bounded in £°° (0, T'; L°°) and
the discrete chemical potential bounded in £*° (0, T; Lz), for any time and space step
sizes, in two and three dimensions, and for any finite final time 7. We subsequently
prove that these variables along with the fluid velocity converge with optimal rates in
the appropriate energy norms in both two and three dimensions.
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1 Introduction

In this paper, we prove error estimates for a fully discrete, second order in time, finite
element method for the Cahn—Hilliard—Navier—Stokes (CHNS) model for two-phase
flow. Let 2 c RY, d = 2, 3, be an open convex polygonal or polyhedral domain. For
all € H'(Q), u € L%(Q), consider the energy

_ Lo 8 2, Lo
E(¢>,u)_/9{£(¢ 1) 5 IVOF + 5 }dx, (1.1)

where ¢ represents a concentration field, u represents fluid velocity, and ¢ is a positive
constant representing a non-dimensional interfacial width between the two phases.
The CHNS system is a gradient flow of this energy [19,20,24,27]:

qp+Vp-u=eV-(MP)Vpr), inQr, (1.22)
p=g"! (¢3 —¢) —¢A¢, inQ, (1.2b)
oju—nAu+u-Vu+Vp =yuVe, inQr, (1.2¢)
V.u=0, inQr, (1.2d)

O =0y =0,u=0 ond2 x (0, 7), (1.2e)

where M (¢) > 0 is a mobility, n = ﬁ where Re is the Reynolds number, y = ﬁ
where We* is the modified Weber number that measures relative strengths of kenetic
and surface energies, and p is the chemical potential:

1= S4E = é (¢3 — ¢) —sAg. (1.3)

Here §4 E denotes the variational derivative of (1.1) with respect to ¢. The equilibria
are the pure phases ¢ = £1. The boundary conditions are of the following types: local
thermodynamic equilibrium (d,¢ = 0); no-flux (d,, 4 = 0); and no-penetration/no-slip
(u=0).

A weak formulation of (1.2a)-(1.2e) may be written as follows: find (¢, u, u, p)
such that

¢ L™ (0, T Hl(sz)) N LY (0, T: L¥(Q)), (1.4a)
¢ € L? (0, T HI;‘(Q)), (1.4b)
wel? (0, T H‘(Q)), (1.4¢)
uel? (o, T H(IJ(Q)) nL® (0, T L2(Q)) : (1.4d)
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du e L? (0, T:H! (Q)) , (1.4¢)

pel? (0, T Lg(sz)) , (1.4f)
and there hold for almost all # € (0, T)

(39, v) +ea(u,v) +b(p,u,v) =0, Vve H (Q),
(1.5a)

) —ea@.y) = (#—g.y) =0. VyeH @
(1.5b)

(O, v) +na(u,v)+ B, u,v)—c(v,p)—yb(p,v,u) =0, Vve H(l)(Q),
(1.5¢)

c(u,q) =0, YqeLiR),
(1.5d)

where

a(,v):=Vu,Vv), b, v,v):=(Vy-v,v), (1.6)

c(v,q) =(V-v,q), B, v,w):=—-[(m-Vv,w)—(u-Vw,Vv)], (1.7)

1
2
with the “compatible” initial data

$(0) = po € HA(Q) = iv c HX(Q)

9,0 = 00n8$2},

u0) =ug €V := {v cHY Q)| (V-v.q)=0,Yq € Lg(sz)} L8

and we have taken M (¢) = 1. The consideration of non-constant mobility functions
is reserved for future work. Observe that the homogeneous Neumann boundary con-
ditions associated with the phase variables ¢ and w are natural in this mixed weak
formulation of the problem (in the sense that the boundary conditions do not have
to be imposed via the spaces). We define the space L% as the subspace of func-
tions of L2 that have mean zero. Furthermore, we state the following definitions
of which the first is non-standard: Hy'(Q) == (H'(Q))", H)(Q) := [Hol(sz)]",
H Q) = (H(l)(Q))*, and (-, -) as the duality paring between Hﬁl and H' in the
first instance and the duality paring between H-1(Q) and (H(l)(SZ))* in the second.
The notation ®(¢) := & (-, ) € X views a spatiotemporal function as a strongly mea-
surable map from the time interval [0, 7] into an appropriate Banach space, X. We
use the standard notation for function space norms and inner products. In particular,
we let ||ul| := |lull;2 and (u, v) := (u, v);2, forallu, v € LY(Q).

The existence of weak solutions to (1.5a)—(1.5d) is well known. See, for example, [1,
30].Itis likewise straightforward to show that weak solutions of (1.5a)—(1.5d) dissipate
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498 A. E. Diegel et al.

the energy (1.1). In other words, (1.2a)—(1.2e) is a mass-conservative gradient flow
with respect to the energy (1.1). Precisely, for any ¢ € [0, T'], we have the energy law

t
E(¢<z),u(r>>+/0 s||w<s>||2+§||Vu<s>||2ds=E(¢o,uo>, (1.9)

and where mass conservation (for almost every ¢ € [0, T'], (¢ (¢) — ¢o, 1) = 0) of the
system (1.5a)—(1.5d) is shown by observing that b (¢, u, 1) = 0, for all ¢ € L2(Q)
andallu e V.

Numerical methods for modeling two-phase flow via phase field approximation has
been extensively investigated. See, for example, [6,7,10-13,15,16,26-28,30,31,33—
35,37-39], and the references therein. Of the most recent, Shen and Yang [35]
proposed two new numerical schemes for the Cahn—Hilliard—Navier—Stokes equa-
tions, one based on stabilization and the other based on convex splitting. Their new
schemes have the advantage of being totally decoupled, unconditionally energy sta-
ble, and adaptive in time. Additionally, the scheme which is based on stabilization
is linear. They provide numerical experiments which suggest that their schemes are
at least first order accurate in time. However, no rigorous error analysis was pre-
sented.

Abels et al. [2] introduce a thermodynamically consistent generalization to the
Cahn-Hilliard—Navier-Stokes model for the case of non-matched densities based on
a solenoidal velocity field. The authors demonstrate that their model satisfies a free
energy inequality and conserves mass. The work of Abels et al. builds on the pioneering
paper of Lowengrub and Truskinovsky [32] who use a mass-concentration formula-
tion of the problem. Perhaps the fundamental difference between the approaches is
that the model of Lowengrub and Truskinovsy end up with a velocity field that is
not divergence free, in contrast with that of Abels et al. For this reason, and others,
developing suitable numerical schemes for the model in [32] is a difficult task, but see
the recent work of [17]. Garcke et al. [14] present a new time discretization scheme
for the numerical simulation for the model in [2]. They show that their scheme satis-
fies a discrete in time energy law and go on to develop a fully discrete model which
preserves that energy law. They are furthermore able to show existence of solutions to
both the time discrete and fully discrete schemes. Again, however, no rigorous error
analysis is undertaken for either of these schemes. Griin et al. [15, 16] provide another
numerical scheme for the non-matched density model and they carry out an abstract
convergence analysis for their scheme. Rigorous error analysis (with, say, optimal
order error bounds) for models with non-matched densities seems to be a difficult
prospect, but a very interesting line of inquiry for the future.

Most of the papers referenced above present first order accurate in time numerical
schemes. Second order in time numerical schemes provide an obvious advantage over
first order schemes by decreasing the amount of numerical error. On the other hand,
second-order (in time) methods are almost universally more difficult to analyze than
first-order methods. A few such methods have been developed in recent years [6,20,
23,25]. Most notably, Han and Wang [20] present a second order in time, uniquely
solvable, unconditionally stable numerical scheme for the CHNS equations with match
density. Their scheme is based on a second order convex splitting methodology for the
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Cahn-Hilliard equation and pressure-projection for the Navier—Stokes equation. The
authors show that the scheme satisfies a modified discrete energy law which mimics
the continuous energy law and prove that their scheme is uniquely solvable. However,
no rigorous error analysis is presented and stability estimates are restricted to those
gleaned from the energy law. The overall scheme is based on the Crank Nicolson time
discretization and a second order Adams Bashforth extrapolation. Chen and Shen [6]
have very recently refined the scheme of Han and Wang [20].

In this paper, we study a second-order in time mixed finite element scheme for the
CHNS system of equations with matched densities. The method essentially combines
the recently analyzed second-order method for the Cahn—Hilliard equation from [9, 18]
and the pioneering second-order (in time) linear, Crank—Nicolson methodology for
the Navier—Stokes equations found in [4]. The Cahn-Hilliard scheme from [9,18]
is based on a convex—concave decomposition of the energy and some key modi-
fications of the Crank—Nicolson framework. More specifically, the contribution to
the chemical potential from the convex part of the energy (1.1) is treated implic-
itly while that from the concave part is treated explicitly in the formation of the
scheme. The mixed finite element version of the scheme was analyzed rigorously
in [9]. The scheme herein is coupled, meaning the Cahn—Hilliard and Navier—Stokes
equations must be solved simultaneously. But, the method is almost linear, with only
a single weak nonlinearity present from the chemical potential equation. In particu-
lar, second order Adams-Bashforth extrapolations are used to linearize some terms
and maintain the accuracy of the method, without compromising the unconditional
energy stability and unconditional solvability of the scheme. The convergence anal-
ysis of a fully decoupled scheme, such as those in [6,20] is far more challenging.
The present work may be viewed as a first step towards analyzing such meth-
ods.

Theoretical justification for the convergence analysis and error estimates of numer-
ical schemes applied to phase field models for fluid flow equations has attracted a great
deal of attention in recent years. In particular, the recent work [8] provides an analysis
for an optimal error estimate (in the energy norms) for a first-order-accurate convex
splitting finite element scheme applied to the Cahn—Hilliard—Nonsteady—Stokes sys-
tem. The key point of that convergence analysis is the derivation of the maximum norm
bound of the phase variable, which becomes available due to the discrete £2(0, T; H')
stability bound of the velocity field, at the numerical level. However, a careful exam-
ination shows that the same techniques from [8] cannot be directly applied to the
second-order-accurate numerical scheme studied in this paper. The primary difficulty
is associated with the 3/4 and 1/4 coefficient distribution in the surface diffusion for
the phase variable, at time steps gl =l respectively. In turn, an £*°(0, T'; H 2y esti-
mate for the phase variable could not be derived via the discrete Gronwall inequality
in the standard form.

We therefore present an alternate approach to recover this £°(0, T'; H?) estimate
for the phase field variable. A backward in time induction estimate for the #2 norm of
the phase field variable is applied. In addition, its combination with the £>°(0, T'; L?)
estimate for the chemical potential leads to an inequality involving a double sum
term, with the second sum in the form of Z';l:l(%)m_j . Subsequently, we apply a
novel discrete Gronwall inequality, namely Lemma 4.2 in Appendix 4, so that an

@ Springer



500 A.E. Diegel et al.

£%°(0,T; H 2) bound for the numerical solution of the phase variable is obtained.
Moreover, the growth of this bound is at most linear in time, which is a remarkable
result.

It turns out that this stability bound greatly facilitates the second order convergence
analysis in the energy norms for the numerical scheme presented in this paper. We point
out that because of the £°°(0, T'; H?) bound for the discrete phase variable, we are able
to carry out the analysis on the Navier—Stokes part of the system that is much in the
spirit of that which appears in Baker’s groundbreaking paper [4]. Due to the increased
complexity of numerical calculations and the appearance of the nonlinear convection
terms, a few more technical lemmas are required for the analysis included in this
paper compared to the work presented in [8] for the Cahn—Hilliard—Nonsteady—Stokes
system. The use of these lemmas results in a numerical scheme which attains optimal
convergence estimates in the appropriate energy norms: £>°(0, T; H') for the phase
variable and 52(0, T:H l) for the chemical potential. Moreover, such convergence
estimates are unconditional: no scaling law is required between the time step size t
and the spatial grid size 4.

The remainder of the paper is organized as follows. In Sect. 2, we define our
second order (in time) mixed finite element scheme and prove that the scheme is
unconditionally stable and solvable with respect to both the time and space step sizes.
In Sect. 3, we provide a rigorous error analysis for the scheme under suitable regularity
assumptions for the PDE solution. Finally, a few discrete Gronwall inequalities are
reviewed and analyzed in Appendix 4.

2 A second-order-in-time, mixed finite element scheme
2.1 Definition of the scheme

Let M be a positive integerand 0 = 19 < #] < --- < tj)y = T be auniform partition of
[0,T],witht =f;41—t;andi =0, ..., M — 1. Suppose 7, = {K} is a conforming,
shape-regular, quasi-uniform family of triangulations of Q. Forr € Z*, define Mf =
{vec@]vlxk e Pr(K), ¥ K €T} C H(Q) and M" | := M! 0 H}(Q).

For a given positive integer ¢, we define the following:

Sy = MZ,
Sp = S NL3(Q),

X, = {v c [CO(Q)]d

h .
UiEMq_;,_l’o,l—l,---,d},

V, = {vexh‘(v-v,w)=0,\fwe§h}.

With the finite element spaces defined above, our mixed second-order energy stable
scheme is defined as follows: forany 1 < m < M, given ¢Z", ¢Z1_l e Sy, u?, uﬂ_l S

o 41 o
Xp, p € Sy find ¢,’1"+1, /L’;: 2esSy, uZ“Ll € X, and p;l”H € S, such that
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1 1
(a s >+sa (Mf“, ) (¢’"+2, 'm+2,v) =0,YveS, (2la)

Hclotan) ) <L)

+8a( ) (u;"+2,1/f>=0,vt/fesh, (2.1b)
1 1
(o™ v) s (5 ) e (70 ) = ()
~ 1 1
—yb<¢;,"+2,v, u;,"ﬂ) = 0,Vv e X, (2.1¢)
1 .
C<ﬁ2"+2,q> =0,Yq € S, (2.1d)
where
m+2 ¢m+l_¢z1 —m+f m+1 1 m m+2 3 m 1 m—1
Sepy Tim s @y = ¢> T30 G =50 50
T 2 2
"m"‘% _ m+1 l m—1 m+1 m ,_l m+1 —m+1
=2t o (o) = 5 (o) + o)) o

(2.2)

The notation involving the pressure and velocity approximations are similar. For initial
conditions we take

¢Y := Rugo, #) := Rnp(z), ul) :=Puup, u} :=Pyu(r),
Py = Pupo, p) = Pup(1), (2.3)

where R, : H'(Q2) — S}, is the Ritz projection,
a(Rpp —¢,5) =0, VE€S§,, (Rp—¢,1)=0, (2.4)
and (P, Py) : V x L% — V; x S‘h is the Stokes projection,

na(Ppu—u,v) —c(v, Pbp—p)=0, VvelX,
cPpu—u,q)=0, Vqedl,. (2.5)

It will be useful for our stability analyses to define the chemical potential at the % time
step via

(o)

(\-;|,_.

(x (o4 97) w)—é(éé,w)ﬂa(éé,w), Vi€ Sp. (26)
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1
We also define the residual function ,0h2 € Sy, that solves

1 1 1 11
(p;f,v) = <6T¢>,f,v) —i—ea(,ui,v) —i—b((bﬁ,ﬁz,v), YvesS,. 2.7

1

While we do not expect the residual p; to be identically zero for finite 2, T > 0, it
will be stable in the relevant norms with the assumption of sufficiently regular PDE
solutions.

Remark 2.1 We have assumed exact expressions for ¢ ;1; and u}l. This is done to manage
the length of the manuscript. We can employ a separate initialization scheme, but the
analysis becomes far more tedious. See, for example, [9]. We point out that, because
of the properties of the Ritz projection,

(#0.1) = (o4 1), 2.8)
under the natural assumption that (¢ (0), 1) = (¢(7), 1). Furthermore, note that this
implies, <8,¢hé, 1) =0.

Proposition 2.2 Suppose that € S, and v € V), are arbitrary. Then
b,v,1)=0. (2.9)
Proof Using integration-by-parts, we get

b, v.)=(Vy,V=—@, V- )=y (LV-v)— (Y =¥,V -V)
= Ye,v)—c(¥—¥,v)=0. (2.10)

Observe_that c(l,v) = 0by _the divergence theorem, using v-n = 0 on 92, and
c(¥ —¥,v)=0since  — ¢ € S and v € V. o

Remark 2.3 The last result relies on the fact that ¥ — ¥ € S’h. In other words, the
phase field space should be a subspace of the pressure space, which is restrictive but
simplifies the analysis. If this does not hold, mass conservation is lost with the current
scheme. On the other hand, if we define an alternate trilinear form

b(yr,v,v) =Ny -v,v) (V- v, ¥v),

we can decouple the pressure space from the phase space and still prove all of our
results. The analysis of this case will be considered in a future work.

Remark 2.4 For the Stokes projection, if the family of meshes satisfy certain reason-
able properties [5], we have

IPpu —ull+h |V ®@pu—w+h | Pup — pll < CH*F (Jul g + Iplygs) . 211
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provided that (u, p) € H! o ()N H Q) x H5(Q), forall0 < s < q + 1. In fact,
for our analysis, we do not need the optimal case s = g + 1. We only require that
the sub-optimal case s = ¢ holds. In other words, we will only assume (u, p) €
H}(Q) NHIT(Q) x HY(Q). See Assumption 3.1.

Following similar arguments to what are given in [8], we get the following theorem,
which we state without proof:

Theorem 2.5 Forany 1 < m < M — 1, the fully discrete scheme (2.1a)—(2.1d) is
uniquely solvable and mass conservative, i.e., (qﬁ;l" —¢°, 1) =0.

2.2 Unconditional energy stability

We now show that the solutions to our scheme enjoy stability properties that are similar
to those of the PDE solutions, and moreover, these properties hold regardless of the
sizes of h and t. The first property, the unconditional energy stability, is a direct result
of the convex decomposition.

Consider the modified energy

1 e
F@, 9w = E@,w+ g = vI*+ 2 IVe— vy,
where E (¢, u) is defined as above.
Lemma 2.6 Let (¢>m+1, m+2 m+1, pZ'H) € Sp x Sp x Xy, x S), be the unique

solution of (2.1a)—(2.1d), for 1 <m < M — 1. Then the following energy law holds
forany h, T > 0:
2)

3 e R |
m=1
“

? Ui m+L
+ - HVﬁh 2
14

m+2

(¢e+1 ¢h’ e+1>+12€:<

m=1

Loful). 2.12)

foralll <€ <M —1.

1

in (2.1b), v = l T2 0 2.10),

m—&—2

1
Proof Setting v = /Lfﬂ in (2.1a), ¥ = 8.9,

_m+%

andg = %ph in (2.1d) gives

(3ot ) e

1

m+~
Vi,

(w*au;"*au;"*i) o,
(2.13)
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1 m 1 m
g ( <¢m+l ¢Zl) ¢ +2)_g<¢h+2 8 ¢ +2)

+ea(¢h+2 81¢’"+2) ( mt} 8,¢’”+2) =0,

(2.14)
1 1 1 1?2 1 1
—~ (sfuZ”Z,ﬁZ”) +2 HVﬁZ”Z +— B< T ﬁ;”“,ﬁfﬂ)
Y Y 14
l m+x _m+1 m+ _ +l m+l
_;C<uh 2’ph ) <¢ 27 7/'Lh 2>= ’
(2.15)
1 (_m—&-é _m+%)
—clu , D =
y h h
(2.16)

Combining (2.13)—(2.16), using the following identities
( (¢m+l ¢}rlrl) ¢m+2> <¢h +2 8‘[¢m+2>

-3 ([l [ =l
(HW ot~ o ~or1[)
”‘f’mﬂ — 29 + ¢/'1"_1HZv 2.17)
(w st ) = g (v - 1vsrl?)
o HW&’”* L2yl + Ve H2
A

and applying the operator T anzl to the combined equations, we get (2.12). O

Before proceeding, we define the discrete Laplacian, Ay : S, — S'h, as follows:
for any vy, € Sp, Apv, € S denotes the unique solution to the problem

(Apvp, &) = —a(vp,§), VE& €Sy (2.19)
In particular, setting £ = Ajvy, in (2.19), we obtain
IARVAII* = —a (vn, Apva) -

Furthermore, we make the following assumptions about the initial data.
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Assumption 2.7 The initial data satisfy the following stabilities:

E(¢f.u)) = c.

1 2 ¢ 2
F(oh¢f.ul) = E@huh) + o |oh =0l + 2 | Ve - vel| <c.

112 112
T|Vug| +t|Vu;| <C,

12 12 12
T |80 + 7 |8:9; +7 ||| <C,

Hy! —1,h

12 112 12 oll2 NE

s +Huﬁ +‘p,§ + |angh] + | anei] =
where C > 0 is independent of # and 7.
See [3,8,31] for a definition of the norm |[|-||_; ;. We also need the following discrete

Gagliardo—Nirenberg inequalities. See, for example, [21,31].

Proposition 2.8 If Q2 is a convex polygonal or polyhedral domain, and Ty, is a globally
quasi-uniform triangulation of 2, we have

3(4—d)

d —
I¥nliLee < CIARYRITOD 1Ynlls + ClIYnlps. Ym €Sy, d=2,3,
(2.20)

4 4—d
IVYRlizs < C (VI + 1AW IVYRITF . Yym € S, d =2,3, 2.21)
for some constant C > O that is independent of h.

Remark 2.9 In the sequel, we will not track the dependences of the estimates on the
interface parameter ¢ > 0 or the viscosity n > 0, though these may be important.

The next result follows from energy stability and Assumption 2.7. We omit the
proof.

1 ,
Lemma 2.10 Let (¢Z’+1, M'Zh,uf“, pZ’H) € Sy x Sy x X, x Sy, be the unique

solution of (2.1a)—(2.1d), for 1 <m < M — 1. Then the following estimates hold for
any h, T > 0O:

o
max, [ 190+ (o) =1+ 1w ] < . @22

0<m<M
4 2 2
0Zmem [”"’71" Iie + e ™+ loi o | < €. @23)
n= [‘4”?_‘1”71H2+HV¢Z"—V¢ZMH2 <C, (24
I<m<M |
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2 il |2
+HVuh 2

M—1 4l
Z m4i
m=0

:| <C, (2.25)

or =2 + g Hz + |voptt = 2vep + v Hz] <C, (226)

M-1 [’
m=1
for some constant C > 0 that is independent of h, T, and T.

We are able to prove the next set of a priori stability estimates without any restric-
tions on /& and 7.

1 o
Lemma 2.11 Let (¢>,’1”+1, ugﬂ,uh’"“, pZ”l) € Sp x Sp x Xy, x Sy, be the unique
solution of (2.1a)—(2.1d), 1 <m < M — 1. Then the following estimates hold for any
h, T >0:

M—1 ik il 2
T |: 81¢h : + 51¢h : :| <C, (2.27)
m=0 H}GI —1h
M—1 +L 2
T w2l o+, (2.28)
m=0
v 1 1
elangy | < || +C Vism<M—1, (2.29)
1?2 12
elAnd, | < |u;| +C, (2.30)
M—1 ] ) . 4(6‘1—01)
Ty [HAmh L) [ ‘qﬁh 2 ] <C(T+1), (2.31)
m=1 L*>

for some constant C > 0 that is independent of h, T, and T.

The proof of Lemma 2.11 is very similar to proofs of [9, Lemma 2.7] and [8,
Lemma 2.13]. We omit the details for the sake of brevity.

2.3 Unconditional £°° (0, T'; L°°) stability of the discrete phase variable

1 o
Lemma 2.12 Let (¢Z’+1, uZHrz,uZ”], pZ’“) € Sy x S x X, x Sy, be the unique
solution of (2.1a)—~(2.1d), for 1 <m < M — 1. Then the following estimates hold for

any h, T > O:
2 8 m 1 k—1 k1 2 1 m 2
|ans| 552(5) Ay +(§) Al e
k=1
2 8 & 1\ ! cken—1 % " 2
HAmﬁ’"“H S§Z<§> HAh¢>h 2 +<§> 'HAh¢;1,H . 233
k=1
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omad
Proof Using the definition of ¢ZI+2, for1 <m < M — 1, we have the following
inequality:

m+ 2 1 2
o <[ )
2 3 B 1 2
T () |
16 16
: H | - H o |
=16 16
~ A m—1 — A m—1 2
hP, +16 o
-3 - v
Its repeated use gives the result. O

We are now ready to show the main result for this section.

Lemma 2.13 Let (¢m+1, +2 m+1, pZ’“) € Sp x Sp x X x 8, be the unique
solution of (2.1a)—(2.1d), for 1 5 m < M — 1. Then the following estimates hold for
any h, T > 0O:

M-
Z S 2| < C(T+1), (2.35)
mad |12 mi L] md ] T
2 ym+s ym+s
052?1@4 “y, + 15515%4 [ HAhth + ‘th e ] <C(T+1),
(2.36)
B L 7 Pl Y Y 37
for some constant C > 0 that is independent of h, T, and T.
Proof The proof will be completed in two parts.
Part 1: (m = 1) Subtracting (2.6) from (2.1b) with m = 1, we obtain
3 1 E | 1 /.3 _1
(i —kov) =ca(3f —div) (8 -} v)
1
+ = (x <¢;21, 45},) — X <¢>}1, qb,?) : I/f)
3 31 1 1 1
= é&a (Zflsrd’}f + ngt(bi’ I/f) T (T‘Sr(f)}?, 1/’)
1 2 1) _ 1 40 238
+8 X @i & x\(bn. b)) V). (2.33)
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Additionally, we take a weighted average of (2.1a) with m = 1 and (2.7) with the
weights % and %, respectively, to obtain,

303 1 ) 33 11 3 (-3 3

Z(qubh +287:¢h7v = —é&a Zuh+zﬂh’v _Zb th,uh,v
(i) (]
4b op,u;,v +4 Ppav ). (2.39)

3 1 3 1
Taking ¢ = 3117 + fu7 in (2.38), v = 3847 + 18:¢] in (2.39), and adding the
results yields

3 1|2
3 301 1
_6T¢h + Zarth

RN
<Mh_ﬂh’1“h+1p‘h +7

1 301 1 1
=7 <¢h - Mh+4uh>+4—( (d)h ¢h) <¢>}1,¢2) 3w +Mi>
3 -3 3 37 1 1 37 3T 1
—Zb<¢;,uz saf 4 a¢>h) b(as,f,u;, a,¢,f+zaf¢,f)
1 1 37 3 T 1
+Z<Ph2775r¢hz+25r¢;f)
L3 3 g 1% o? 2 1P
< i) relui| welail e el + e (e.00)]
2
+C|x (ohoh)
3t -3 3 3 31 1
_I__ V 2 ﬁ2 ‘_8 2—{-—(3 2
4 h L4 h L4 4 Td’h 4 ‘L’d’h
T ! 1 3.3 1 1
+7 H Vo] i} —6r¢,$ + Z&@f
L4 L4
T 1 3 1
+Z‘ph ‘ 8¢h+ (qu)h
N I 53 3
< o gl + e + o] [vai] ([oa] + [asi])
38 7 18 7 -2 _7 A
+Ct 1 Py, +Z O | ||V, Vo, |+ h¢h
7|3 3 1 ')
+6 Zgr(ﬁh +Z(Sr¢h
1 2> 3¢3. 3 1. 1f? 32 12
< C+—|ni| +=|58:07 + =807 | +Cr|Va| +Ct|Va]
4 6 |4 4
L3P e )3, 3 1 3 3|2
< C+ZHMh +5H181¢h +157¢h +Ct llh s
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where we have used Young’s inequality, the embedding H! < L°, estimates (2.23)
and (2.21) and Assumption 2.7. Again, considering Assumption 2.7 and considering
estimate (2.25) and the following inequalities

303 1 12 2 12
HZ(S,@f +ZST¢>; 8 ) ¢h ~3 8¢, || (similar to (2.34)),
3 13 3 1 1 3 2* 1 3]
(i =k i+ g ) =3 i) =5 (i)
L of> o 2> | os)?
2 M;f ZEHMﬁ —EHHﬁ s
we have,
DIV P I N 3|2
i e |5 | S Clmi| + g |detn| +CT|Var| +C=cC.

(2.40)

Now, using (2.29), (2.20), the embedding HY(Q) — L6(Q), and (2.23), we have

4(6—d)
2 d

<C.

S ol

+ |4
LOO

3
>

Using Lemma 2.12, (2.20), the embedding H'(Q) — L°(), and (2.23), we obtain

4(6 d)

i+ o],

Part2: 2 <m <M —1)
For2 < m < M — 1, we subtract (2.1b) from itself at consecutive time steps to

obtain

(1)) )
+é<<¢m+l¢h> (o.05) )

1
r8,¢h+2 + 76 by -3 lp)

g (o (7 =07 9). @
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for all € Sj,, where
2
= (¢m+l (p}rln’ ¢m—1> <¢m+l) ((p}rln)2 + <¢}rln—l)
+¢m+l¢m +¢m+l¢lr1n—l +¢;’n¢/rln—l

We note that using the H'(Q) — LO(2) embedding, we achieve the following bound,

“w ”L* — H ¢m+l (¢;ln) <¢m l) ¢m+l¢h +¢m+l¢ +¢h ¢m 1

L3

=c oyt +cleilie +c o

¢m+l‘

<c oL, +clor i+ ¢ Jor!

L6

<C.

|
Now, forall 2 <m < M — 1, we take a weighted average of the m + % and m — %
time steps with the weights % and JT of (2.1a), respectively, to obtain,

1

m+3 3 3 m+t 1 m-3 +3 m+3
( Scdy S~ BT¢Zl 2,v):—sa<zuf 2—|—Zu;’: v ¢m say, "I

1 -m—3 _m—3
_Zb<¢h s, 2,v>, Yv € Sp. (2.42)

1 _3 _3
Taking y = %M’,?”Jr%u,’f 2inQ24l)v =1 ( t¢’"+2 + 180, 2) in (2.42),
and adding the results yields

2

+ -3 ml 1 w3 m+1
(MZIZ_M:’:Z_MHIZ'FZMZ 2) 5¢h 24 3(]5

3 m—l m— 3 3 m+ 1 _3
= - (§8T¢h 2__51(15}, ? 4Mh 2+4Mh 2)

1

2
m+l 3 m+~ 1 m-3
(‘Uf’,"‘sf‘?)h Z’ZI’Lh T Ly, 2)

|

[« &2 o

~
™

3 - 1 -3 3 m—3
< et 2| B g T+ ey 3uh+2+ w,
8e 8e
T m+ m+l m—sx
+1az loft s (oo™ Jour ]
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Sy 6)
L
~m+ 1 _m+ mty 1 -3
_ —b ¢ 2 2 8 ¢h 2 + 5 ¢

_ 3 m+1 1 3
——b<¢’"2 i, ° ,4r¢,, P 8z¢ )

3

-2

m+1 m
i on

Now we bound the trilinear form b(-, -, -). Using (2.21), Holder’s inequality, and

(2.22), the following estimates are available:

‘ <¢’”+2,"" : 8¢>h+2+ 2501 )‘

1 1
< |vgrz| | ‘ a¢h+2+ i
L4 L4
1 1 o]
ot g o (Hwﬁ“ )
1 m+1 1 2 _m+1 2 _m+l ~m+ 4 2
§§—f¢h2+45f¢ +C|Va, 2| +C |V, | A, | .
(2.43)
and, similarly,
~m—3 _3 3 1 1 _3
"’ (452" g 2,—5r¢2“2+—5r¢21 )’
4 4
m+4 2 m—3 2 m—3 2 ~m—3 2
H Z8.p, 1 8¢> +CHVﬁh 2 —l—C'Vﬁh Ay, 2
(2.44)

for any 2 < m < M — 1. Therefore, we arrive at
2

a¢h+2+ a¢h

m+5 m—1 3 mil I m-3
<V“h t oy, Z’Z/j‘h 2+Z“h 2)

T m+1 2 T m—1 2 T m—3 2
= 3 3¢, : +§ 3¢, : +§ 3¢, :
1 3 2
+Ct MZHZ +Ct |, ?
H! H!
L2 L2 2
+Cr|va, | e |va 2| a2
3 2 3 2 3 2
+Cr||\va, 7| +Cr|va, 2| [Awg, P L V2<m<M—1. (245)
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Furthermore, we use Lemma 2.12 and (2.29) to derive the following inequalities:

2 2 2
I B Al
k k—i 2
1 J
B0 (o )
j=1
k k—7j 2 2
1 J 2id1)—1 21
B Q) (i) e
j=1
2 2 2
s R G R
k k—7j 2 2
1 J v2j)—1 v(2j—1
o) (i) o
j=1
EONT ep-t® | @i-n-1
5CZ<§> w2 +Huh 2 )+c. @an
j=1

Applying Zi:z to (2.45) and using the following properties

m+5 m—% 3 m4i 1 m-3 1 m+1 m—% mtl m—1
<p‘h Z_Mh Z’Zp‘h 2+Z/”Lh 2)2_ I, z_u'h z’uh 2+Mh 2

1 m+1 2 1 m—1 2 1 m+L m—1 2
=§H“h I T R TR
1| ml 3P 1 med 1 32
—glufz—ufz +§HMZ2—2MZ +uy,
2 2
m+3 -3 3 +1 3 L
H r¢h S+ 6‘[¢ Z 3 5r¢Zl : ~3 ft/)Zl (similar to (2.34)),
we conclude that
1 l+% m+3
— _ 8 2
2” h + 16 # O
L] 3 %2 e T
=< 3 Ky — Ky, + == 5r¢h + == D) 51‘1’;,

m+
vu, °

26
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m+ S DN Y ‘ m+
: .2(3) Wi v oo 3 [vart
j=1 m=0
1 2 mo N\ mi 2 52
<C(T+1)+CIZ va, Z(g) (Hu,ﬁ 2 +HM,’1 2 )
m=0 j=1

forany 2 < ¢ < M — 1, where we have used Part 1, (2.28) and (2.25). Moreover, with
an application of the discrete Gronwall inequality from Lemma 4.2 (with ¢ = % < 1),
we arrive at

2)

<C(T+1), (2.48)

2 +1
m
vu, °

L] e+l
2 [ Hn

<C(T+1) exp (CA TZ

m=0

where (2.25) has been repeatedly applied.
Now, using (2.29), (2.20), the embedding H'(Q) < L°(Q), and (2.23), we get

By Lemma 2.12, the following bound is available:

4(6—d)
d

€+2

gt [ <C(T+1), ¥2<t<M—1.

LOC

e+1]?
|aef | sca+n, vosesm-1.

Using (2.20) again, the embedding H'(Q) < L°(Q), and (2.23), we arrive at

4(6—d)

H&“H T < C(T+1), V2<b<M-—1.

The proof is completed by combining Parts 1 and 2. O

Remark 2.14 With a generic non-negative mobility, M (¢) > 0, the leading order
energy stability analysis is still available. On the other hand, the £°°(L>°) estimate
of the discrete phase variable ¢y, given by Lemma 2.13, takes full advantage of the
constant mobility assumption, M(¢) = 1. As a consequence, the optimal conver-
gence analysis presented in this article is based on such an assumption. Many of the
stability results can be obtained straightforwardly in the non-degenerate case, where
M(¢) = My, for some My > 0. The analysis of the non-constant mobility case will
be considered in a future paper.

3 Error estimates for the fully discrete scheme

For the CHNS system (1.2a)—(1.2e), the existence of a global-in-time weak solu-
tion, defined by (1.5a)—(1.5d), has been established in [30]. However, the regularity
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of the weak solutions stated in (1.4a)—(1.4f) is not sufficient to justify the optimal
convergence analysis. To carry out such an error estimate, we need to seek a strong
solution to the PDE system with higher order regularities. It was proven in [1] that
unique strong solutions exist for the CHNS system (1.2a)—(1.2e), globally-in-time for
2D, and locally-in-time for 3D, with a constant mobility assumption (M (¢) = 1).
As a result, higher order regularities could be derived as follows: for any initial data
uy € H™(Q), ¢po € H™1(Q), there is an estimate for ||u(¢)|| g~ and |l @)l grm+1,
m > 1, globally-in-time for 2D, and locally-in-time for 3D, under appropriate compat-
ibility conditions between the initial data and boundary conditions [36]. In other words,
we could always assume a smooth enough solution for the CHNS system (1.2a)—(1.2e),
globally-in-time for 2D, and locally-in-time for 3D, so that the following regularity
assumptions are reasonable. In any case, it is standard to assume that higher regularity
solutions exist than are available from current PDE theory. See [29] for examples of
this practice in the analysis of numerical methods for the Navier—Stokes equation.

Assumption 3.1 Weak solutions to the CHNS system (1.2a)—(1.2e) have the addi-
tional regularities

¢ e L0, T; W) n H' 0, T; HIT(Q))

NH?0,T; H*(Q)) N H(0, T; L*(Q)), (3.1)
¢* € H*(0, T: H'(Q)), (3.2)
e L*0,T; HI(Q)), 3.3)
ue H0, T; L*(Q) N H*(0, T; H(Q))

NL®0, T; K@) n H' 0, T; HIT(Q)), (3.4)
p e HX0,T; H1(Q) N LA(Q) N L>(0, T; H1(Q)), (3.5)

where ¢ > 1 corresponds to the finite element spaces defined at the beginning of
Sect. 2. Furthermore, the initial data are sufficiently regular so that Assumption 2.7 is
valid.

Remark 3.2 The norm bounds associated with the assumed regularities above are not
necessarily global-in-time and therefore can involve constants that depend upon the
final time 7'.

Remark 3.3 We also note that the higher order temporal derivative of the exact solution
comes from its L°°(0, T; H™) estimate (for m large enough) since the higher order
temporal derivatives could be converted into higher order spatial derivatives, indicated
by a careful calculation of (1.5a)—(1.5d).

Now then, weak solutions (¢, i, u, p) with the higher regularities (3.1)—(3.5) solve
the following variational problem: for all t € [0, T,

Op,v)+ea(u,v)+b(p,u,v)=0, Yve H (Q),
(3.6)

) —ea@.p) - (#—g.y) =0. VyeH @
(3.7)
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(O, v) +na(u,v)+ B, u,v)—c(v,p)—yb(d,v,u) =0, Vve H(l)(fz),

(3.8)
c(u,q)=0, VqeLiQ.
3.9
We define the following: for any real number m € [0, M], t,, := m - T, and

Y™ := ¥ (t,). This definition applies to vector valued functions of time as well. Note
that, in general,

1 _—

+3 . +1) _. gm+3

P =, ) # 5 (8 ) =,

An over-bar will always indicate a simple central average in time. Denote

c‘,’f’m = @™ — Ryp™, EM = p" — Ryu™, EX :=u" — Ppu”,
EPM = p™ — P, p™. (3.10)

The following definitions are given for any integer 0 <m < M — 1:

8T¢m+% _ ¢m+1 _ ¢m ’ 8Tum+% _ um+1 — ’

T T
o?’m+% = 8,Rh¢m+% - 8,(]5"”'%, alu’m+% = 5,Phu’”+% - 6tu’"+%,
af’er% = 8t¢’"+% - 8t¢m+%, o;’er% = 5 u" — gt
U;’*m'*'% — q_str% _ ¢m+%’ 63“*’"'*‘% — l—lm+% um+%

Uf,m% — 5 <¢)m+l7¢m> _ (¢m+%>3’ a}lwﬂr% it
Then the PDE solution, evaluated at the half-integer time steps - 1 satisfies
(ST Rh¢m+%, v) +ea (Rhu’”%, v) = (af)’mﬂ + af’n1+%, v)
—b (¢>’"+%, ute, u) , (.11a)
ea(Rid™ 2 v) = (R 2, v) = ea (of " 1//) + (sé"’"“, w)
o) ) ()

1 (672 v). (3.11b)

€
(81Phum+%, v) +na (Phﬁm+%, v)

— 1 “J”’l‘f'l ll,m-|—l u,m+l p,m—|—l
—c(V,P;,pm+2>=na(03 2,v>+(01 4o, 2,v)—c(v,oy ?
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+yb (¢>m+%, v, M’“%) - B (u’”%, u"t, V) : (3.11c)

1
¢ (P,,ﬁm+%, q) —c <a3“””+2,q> , (3.11d)

forallv, ¥ € Sp,ve Xy, andg € S’h,foranyO <m<M—1.
Restating the fully discrete splitting scheme (2.1a)—(2.1d), we have, for 1 < m <
M — 1,and forall v, € S, v e X, and g € Sp,

1 1
(8,¢Zn+2, v) +ea <MZ1+2, v) =_b

N

1 1
gty Smts
¢h 9 uh 9 V) )

(3.12a)
—m+1d & +1 1
ga (q&;ln z, 1/f) + 2 <128$¢>Z", 1#) - (MZL ’, 1/f) =z (X (¢Zl+l, ¢Z1) , W)
1 ~m+%
+-\¢, “.v¥ ), (3.12b)
e
41 ) el ol 41
((Sfuhm 2,V> +na (uzl 2,v> —C(V,le 2) = yb(¢;n 2,V,MZ1 2)
B (a;"+%, arte, ) ,
(3.12¢)
1
c (ﬁZ*Z , q) =0, (3.12d)
where 82y = L (" — 2y 4y,
Now let us define the following additional error terms
EPM = Ry — @, EPM =M — g, ENT = Ry —
g =P —up, EV=u" —uy, )" = Pyp™ - pl,
epm = p" — pit. (3.13)
We also define, for 1 <m < M — 1,
1
asqb,m+2 = X (¢]I1n+l’¢;’ln) _ X (¢m+l’¢m> , (314)
1 - 1
od " = gt g (3.15)
1 1
oo =t — (3.16)

Subtracting (3.12a)—(3.12d) from (3.11a)—(3.11d), yields, for 1 <m < M — 1,
1 1 1 1
((Sfé’f’mﬂ, v) +¢ea (S;f’mﬂ, v) = (a]d”m+2 +0§>,m+2, v)
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~ 1 1
+b <¢,’f+2,ﬁf+2, v), (3.17a)

% a (63¢>’", w) : (3.17b)

1 1
+B ( m+2’ﬁ2"+2’V>, (3.17¢)

—wma ) mal
C(é}?’ +27Q> =C<03u’ +2,q> (=0), (3.17d)

Setting v = £ in 3.17a), ¥ = 5" in (.17b), v = = 1& "2 in
1

(3.17¢),q = %5’5 2 n (3.17d) and adding the resulting equations, we have

€ bmt1 ]2 é.m||? 1 m+1? 2
o (Jost[ ~Joet ) + 5=l - e
8'[2

2 2
+a (535,;”’ L 8.E ’"+2> +- Hvs“ m}
14
_ (Ulqﬁ,m+§ +G§>,m+%’€}/j,m+ >+8a< d>m+2 5, 5¢ m+2)

1 1
+ (gt;;,m+z ’ 8tgf,m+2>

1 1 1 1 1 2
N ! (O_jﬁ,m+2 +05¢,m+2 o ,m+2’8rg;f,m+2) N Si (82¢ 5. 5‘7’ m+2>

@ Springer



518 A.E. Diegel et al.

1 1
( 7 l :m+2> <¢m+2’ _m+2 gu Yn+2>
( m+ g“m+2 Mm+l> (¢h+£ g;:m"'z Mm"';)
) k) k) h

1 = 1
- ;B( mty gt 5,‘1"’“2) + )I/B< mh gl 5;"’"+2>,

(3.18)

forall 1 <m < M — 1. Expression (3.18) is the key error equation from which we will
define our error estimates. Observe that the error equation is not defined for m = 0.
The following estimates are standard and the proofs are omitted.

Lemma 3.4 Suppose that (¢, ., u, p) is a weak solution to (3.11a)—(3.11d), with the
additional regularities in Assumption 3.1. Then for all t,, € [0, T] and for any h,
T > 0, there exists a constant C > 0, independent of h and v and T, such that for all

0O<m<M-—1,

2 2g+2 1,
¢ + h q m+1
o3 < ¢ / 13,612, ds,
tm
(3.19)
2 3 t,
, +1 m+1
oy = I [ s Pds, (3:20)
tm
2 3 Im+1
HVA pomt: 53—6 IV Adsp(s)|>ds, (3.21)
tlﬂ
2 3 Im+1
m—+
Hw;”’” | <o Voo ©)2ds,  (3.22)
1 m+1 2 1 m\2 m+3 2 ? 7:3 1 2 2
S 5@ = (o) | =g [ |asief, ds G23)
H
In addition, foralll <m <M — 1,
2 2wl T [ 2
|2vasie|” < 5 IV Adp ()P ds,  (3.24)
tm—1
2 3 plmti
[2vsien| < = 19355 (5) 2 dis. (3.25)
Im—1
3 1 23 [imn
Vet —v(2em — —m )| < 2 v 2 3.26
H ¢ <2¢ 54 <7 Vsl (3.26)
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Lemma 3.5 Suppose that (¢, ., u, p) is a weak solution to (3.11a)—(3.11d), with the
additional regularities in Assumption 3.1. Then for all t,, € [0, T] and for any h,
T > 0, there exists a constant C > 0, independent of h and t and T, such that for all

O0<m<M-—1,

2 2g+2 pt,
, +l h<4 m+1
‘ol“’” | <c f 1:0(5) I3y 1 s, (3.27)
tm
2 3 Im+1
u,m+% + 2
o < — [|9sssu(s) |~ ds, (3.28)
2 640 J, s
12 3 playd
HVA%“ "R s [ IvAduEIP ds, (3.29)
tm
12 3 ptmtl
Hw;"’”*z < 5% IVassu(s)|1* ds, (3.30)
tm
2 3t
, +l T m+1
oy " < o6 1955 p(s)1I* ds. (3.31)
tm
In addition, forall1 <m <M — 1,
2 3 Im+1
HrZVAsfu’" < % IVAd u)|2ds,  (3.32)
tm—1
2 3 tm+1
[e2vstwr| < 5 [ Ivasu) P s, (3.33)
tm—1
3 1 2 3 plmtl
vt v (e — e 1) < & IVassu(s)|? ds, (3.34)
2 2 12),
2 3 Im+1
[e2vezpr| <5 [ Ivasp@IPds. 339)

Im—1
The following estimates are proved in [9].

Lemma 3.6 Suppose that (¢, ., u, p) is a weak solution to (3.11a)—(3.11d), with the
additional regularities in Assumption 3.1. Then, there exists a constant C > (O indepen-
dent of h and t—but possibly dependent upon T through the regularity estimates—such
that, for any h, t > 0,

12 tm+1 m+1 2
wa’m“ s [T vageas s [ oo, @
tﬂl li}l
(3.36)
z])m+l 2 2 2
vas’ 2” =c |verm |+ ¢ [verm |, (3.37)

where E9™M = ¢ — ¢
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Lemma 3.7 Suppose that (¢, 1, u, p) is a weak solution to (3.11a)—(3.11d), with
the additional regularities in Assumption 3.1. Then, there exists a constant C > 0
independent of h and t such that, for any h, t > 0,

1 2 Im+1 2
H%f " <o / IVasd @I ds +C [ver™|* + ¢ | vernt |,
tm—1
(3.38)
u m+l 2 Im+1 2 2
H Vog© | = Cr3/ IVassu()|I* ds + C [VE™ |+ C Hve“’m*lH :
Im—1

(3.39)

where E9™ = ¢™ — ¢I" and EM™ = u™ — ull".

Proof For 1 <m < M — 1, using the truncation error estimate (3.26), we obtain

12 3 platl 27 3 2
Vol "2 <32 IVasd @I ds + = |ver|* 4 = | vernt |,
12 J,,, 4 4
(3.40)
Estimate (3.39) similarly follows. m]

The following technical lemma is proved in [8].

Lemma 3.8 Suppose g € H' (Q), and v € Sy. Then

(g, vl = C Vgl vl =1 (3.41)

for some C > 0 that is independent of h.

We use only some very basic estimates for the trilinear form B:

Lemma 3.9 Supposeu,v,w € H(l)(Q). Then
[B (u,v,w)| = C[[Vul [VV] [[Vw]. (3.42)
Ifu e L®(Q) and v, w € H\(Q), then
|B (u,v,w)| < Cllul e V] [[VW] . (3.43)
Ifu e L2(Q), v, w € H(Q) N L®(Q), then
[B (u, v, w)| < [[u]l (IVVI [WllLeo + IVWI V]l o) - (3.44)
We also recall some basic inverse inequalities
lenllwp < CHY= PR Nyl . ¥ o € M,

I<p<g=<oo, 0<f<m<1, (3.45)
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From this and the Gagliardo—Nirenburg and Poincaré inequalities it follows that [4]

1_d

1_d 1 1
lonlipe < ChZ72 l@nll2 IVepll2, d=2,3, (3.46)
for all ¢, € Mﬁ,o-

Lemma 3.10 Let (P, P,) : V x L(2) — Vj x S'h be defined as in (2.5) and suppose
that (¢, u, u, p) is a weak solution to (3.11a)—(3.11d), with the additional regularities
in Assumption 3.1. Then, for any h, T > 0 there exists a constant C > 0, independent
of h and t, such that, for0 <m < M — 1,

IPrull oo, 7;100(0)) < C. (3.47)

and, as a simple consequence,

€2 Lo©.1:1(2) = C- (3.48)

Proof Let w = Zpu € X, the standard Lagrange nodal interpolant of u. Follow-
ing Baker’s unpublished paper [4] and using standard finite element approximations,
including (2.11), inverse inequalities, and Sobolev’s embedding theorem, we have

IPrull o = [Ppu—w+w—u+ul
< Pru = Wl poo + W —uf| oo + [uf| Lo
< Ch™% [Ppu—wi + W — ull o + ull
<Ch i (IIPpu —uf| + lu —w) + [[w —ull o + [lu]l
= C (Il = Wiz + 5% u = wl ) + Ch™3 [Pyu — ull + ull

_d
< lullze + ChT=2 (Jul ot + |plga) -

Taking the L* norm over (0, 7') and noting that ¢ > 1, the proof is concluded. O
We now proceed to estimate the terms on the right-hand-side of (3.18).

Lemma 3.11 Suppose that (¢, i, u, p) is a weak solution to (3.11a)—(3.11d), with
the additional regularities in Assumption 3.1. Then, for any h, T > 0 and any o > 0
there exist a constant C = C(o, T) > 0, independent of h and t, such that, for
1<m<M-—1,

3 (Ivet [ = Jvet ) + 55

2 1
ET =
4 “ (835;?”’ ngl?’m—”)

e[ - e

3 12 s 2
e frer gy ] s clese]

VE
2y h
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e vaf”" H2 e H vepm! H2
+clepmP+cl 52""171”2 T PR T opermt a4y
—1,h
where
R+ = hzi” / " o (5) 2 ds + hz{fz / " (I, ds
tm tm

3 tm+1 2
47 [ o P ds
tm
Im+1 Im+1
+r3/ ||8sssu(s)||2ds+r3/
Im Im

3 thrl 5
+r / Va5 ()11 ds
1

m—1

Bys 2 (5) H; ds

3 Im+1 5 3 tm+1 2
+r / IVassu(s)|? ds + / IV Adss(s)|2 ds
1, tn—

m—1 1

3 Im+1 2
b / 1o p ()12 ds
m

2 2
2q m+%
+ h ,bL Hq+l

2 2 _
+ h* ‘rb’”“ ‘H“l + W2 " | + B ‘¢'" 1‘

Hat!

2
+ h2q um—H
Haq+!

+ h |um|i1q+1 + h* ‘umfl ;H + ‘pmﬂ ‘;H + h* |pm|2q+l
+ K24 | pm=! ;H . (3.50)
Proof Define, for 1 <m < M — 1, time-dependent spatial mass average
W = || (5,5"’”*5, 1> . (3.51)

Using the Cauchy—Schwarz inequality, the Poincaré inequality, with the fact that
1 1
(ﬁ””*z +oy "2, 1) 0,

and the local truncation error estimates (3.19) and (3.20), we get the following estimate:

1 1 1 1 1 1 1
Jm+z ,m+3 Jm+z Jm+3 ,m+3 Jm+x ,m+z
‘(aip 2—1—0; 2,5;; 2)‘:‘(0? 2+of 2,5;; 2—5;; 2)’

1 1
n,m+5 Hom+5
’ gh - 5/1

<| !

1 1
Jm+3 sm+3
a]d) 2+a¢ 2“
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p.m+y  pmt+y fam+%
-ve,

04 + 0, H

12 +6‘ 2
8

fom+

$.m+1 2 ve!

+C H02

Im+1 b
/ 195612041 ds
Im

3 12
T m+1 2 & wom+
+ C% . 0555 ()~ ds + 3 vah :

(3.52)

Meanwhile, standard finite element approximation theory shows that

1
vag,m-‘-z — HV (Rhl/«m-‘r% _ Mm+%)H < Ch4 ‘ﬂm+%

Hat+l '

Applying Lemma 3.8 and the last estimate, we have

(et aepm)

wom+t 5.€
¢y

<C HV&;

—1,h

1
m+}
5. £

1
Hat —Lh

2
|
¢,m+5

2 5.

2
<Ch* ‘um+% +

an T g (3.53)

—1.h

Using Lemma 3.8 and estimate (3.21), we find

1 1 1 1
ca (af’nHz , SIEZ)’Mz) = —¢ (Aaf'"”z , StEZ)’erz)

1
¢vm+§

¢,m+éH 5.€
T™h

<C HVAU3

—1,h
o ¢m+l 2
—8:8, °

6

-[3 Im+1 5
<cZ / 1V Adsyd(s) | ds +
96 tm —1,h

(3.54)

Now, using Lemmas 3.6 and 3.8, we obtain

1
= 5.E0" 2

¢,m+%
e Oy

el

1 1
(ot ™)
—1,h
2
L@
6

1112
¢,m+§

Pmt3 5.E

<C HVU4

—1,h
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3 Im+1 2
<cr / V055 ()17 ds
t”l

3 Im41
+Ct /
Im

2
1
5.E0" 2

o

5 2
Bysh (s)HHl ds+s

—1,h
(3.55)

Similarly, using Lemmas 3.6 and 3.8, the relation £+ = Eff’mH + E;f’mH, and a
standard finite element error estimate, we arrive at

1 1 12 12
gl (a;ﬁ’m+2,8r55"n+2>‘ §CHVJ§>’m+Z —f—g 6,5}?’m+2
6 “1h
2 2 12
sc |verrt [T cverm|Ta S logy
—1,h
2 2 2
cefoetmfelostr el ]
pm||?> @ ¢.m+1 2
+c|vepm |+ 2 oey "
6 1k
2 2
2 +1 ¢,m+1 2, 2
<chX ‘¢’" ’H‘Z‘H e vah H +Ch |
2 12
Sel N2 RS X (3.56)
—1,h

Applying Lemmas 3.7 and 3.8, the relation €4 +1 = 0" +! 4 "+ ‘and a standard
finite element error estimate, we find that

1 1 12 12
! <og’”m+2,5fgf”"+2> gc‘vag’””*z T PG
6 —1,h
3 Im+1 2 é.m 2
<cCr (/ V855 (5)] ds>+CHV5h’ |
tm—1
bm—1]2
+c|vepm|
2q | pm|2 2g | gm—1 2 o ¢,m+% ?
+ O [ [ +CH [ 42 5] e
The following inequality is a direct consequence of (3.24):
2 1 3 tm 112
eT 1 T 1
T N W sc—/ IV Adp(s) 2 ds + = 3.6
4 3 Im—1 6 —1,h
(3.58)
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Using Lemma 3.5, we also obtain

u, m+

to um—i—2 gum+2) <C’

Next, using (3.31),

14

Now let’s consider the convection trilinear terms.

1 su,m+1
—-—c|\&, Lo

2 2 2
um—&—2 +C um+2 +L V€“m+2
22y
2 2g+2
—u, m+ h q m+1 )
22)/ H VS 2 +cC ,/z:,l ||8Su(s)||Hq+1 ds
‘L'3 tm+1
+C 510 ||8;;qu(s)|| ds. (3.59)
Im
)4 m+% < n —u,m+% p.m+53
— |VE +C|o
’ ) - 22y H ! ’
2 3 pt
n —u,m—+1 m+1
= E vah o+ %/ ||3ssP(S)||2dS,
(3.60)

priate terms, forall 1 <m < M — 1,

'—b (¢m+£’ um-i-%’ 82‘*’""'%) (¢m+2, =

+b<¢’"+ 8“'"”,/1’”*1) (¢>2,"+2 5"m+2,uf+;)‘

Adding and subtracting the appro-

+% 8M,m+%)
*“h

1 1 1 1
. b( Pt g g (o 8 )|
1 1 1
+ su,m+t um+s5 ,m+3 ,m+z
2 VEY 2 _ g 2 g“ 2 _ 5“ 2
3 h h
1
+ um+ Jm+5
+1 1 ,m+l ,m+l
< ‘V 6¢ 2 ‘um+2 5}/" 2 _5}7 2
L4 4
L
m+1 —u,m+ 1
4 vo.g 2 ‘gh 2 Mm+2 )
L L
1 1 1 1 1
~m+5 su,m+5 u,m+5 ,m+5 Jm+x5
+ Vg, 2| & T e T e T T
’ L4 L4
1 1 1
~m+5 su,m+5 wom—+5
+ V¢h 2 gh 2 Ea 2
L4 L4
& w,m+~ 2 um+ ¢,m+1 2 ¢,m 2
< -|VETTTH = |IVE,T +C Ve +C V&)
8 22)/
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2 2
1 Py 4020 e |

Ha+! Ha+!
2
2q |44 2q |,,m—1
+ "+ h ‘u Hat+l
5 112 3 tm+1 ) 3 tm+1 ’
ww i re [ ivasgotastes [ 19ascPas,
tm—1 Im

(3.61)

where we have used Lemmas 2.11, 3.4 and 3.7.
Additionally, after adding and subtracting the appropriate terms, for 1 < m <
M — 1, we have

1 1 1 sum+l + _m++  sum+l
—|=-B um+2’um+2’g 2 + B 2 T 2 g 2
% h h h
1 u,m+% +1 su,m+1 2 2 +1 —u,m+%
= —|Bf|o u"rz €& ) =B =6u",u""2, &
3 ’ > “h R ’ *“h
~ 1 u,erl —u,erl ~ 1 —u,erl —u,m+l
(um+2’a3 z’gh 2>_B(um+2’£a z’gh 2
1 1 1 1 1
su.m+5  swm+5  sum+tz sum+sy _al sumts
+B(Ea 28" g 2>—B<8a 2@t g, 2)
~u,m+% —u,m+% —u,m+% ~u,m+% —m+l —u,m+%
(gh L& E) -B(&" w2

—B( s 5“’”2 5“m+2> . (3.62)

This is the same basic decomposition considered in Baker’s paper [4]. We immedi-
ately see that the last term vanishes by anti-symmetry in the last two terms of B:

+
Buh25

Using estimate (3.42) of Lemma 3.9,

+1 +1 . . oo
R Eu ™72 = 0. We examine the other eight terms individually.

1
l‘B(a;”””,um*i,EL"’”“) < CH ot} | vurss Hve“’”+2
%
2 3 Im+1
41 T
< 7y va“’” 2 +C% Vasuls)|? ds; (3.63)
l]B(; s w6 ) | < e [vesier] [vars | fugr
Y
2 3 tm+1
< Hvs“’”*z + = / V556 ()1 dis; (3.64)
22)/ tm—1

1 ~ 1 um+t sum+l
— B um+2 , 03 2 , 8h 2
14

<C HVﬁ'"*%

1 1
u,m+5 su,m+5
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<y 6] el
2 3 Im+1
< % H vE, s + C% [ Vagsu(s)||® ds; (3.65)
l‘B(u’"+2 5;""”5,5,',””5) < c| vt va“"”z HVE“'"+2
Y
- L Vgu,m-i-j 2+Ch2q ‘um-'rl 2 +}llm|2
= 22y h Ha+1 Hat!
2
+Ch ({p’"“\m +[p" i,) : (3.66)
! ‘B (53’m+5,ﬁ’”+5,£,'f”"+%> < |varmes ”Vum+2 va“ 3
Y
um+2 +Ch2q |um| +‘ m—1
- 22)/ el Ha+!
2
+ Ch* (}pmﬁ,q + ‘p’”‘l Hq) . (3.67)
Using the stability estimate (3.48),
~ o o 1 ~ 1 _ 1
! ‘B <5;"m+2,5;"’”+2,5;"’"+2) < | &t vE, Mt H vENTE
y LOO
_ 1
: H | o
u,mt1 2 +1 2 2
= 2y, Hw‘ : +Ch a (‘u’” ot T |u’"|Hq+1>
2
+ Ch¥ <)pm+1 ot |pm|§,q) : (3.68)

and, with the estimate (3.44), the inverse-Sobolev inequality (3.46), the Poincaré
inequality, and estimate (3.48) again,

l ‘B (g;l,m+%’g—;,m+é7£;,m+é> <cC ‘5 m+2 vau m+2 ‘g;ll,er%
y LOO
+C‘5u m+2 vau m+2 g—:m+%
LOO
=€ “"mm” Bl gt + |plaoh's | VER"
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e ‘guerzH vauerz
2
< I |verms +c||5;;’m||2+c‘5;vm—l‘ ; (3.69)
22y
1 ~u,m+% _ 41 —u,m+%
—|B\¢&, ,ua"r2 g
y
~ 1
< (Hﬁ"“r% +Hvam+% )‘g,‘;’””z va“’"“H
Lo L*
2
o va“"’+2 +clgm P +c e (3.70)

Combining the estimates (3.52)—(3.70) with the error equation (3.18), the result
follows. O

Lemma 3.12 Suppose that (¢, u,u, p) is a weak solution to (3.11a)—(3.11b), with
the additional regularities in Assumption 3.1. Then, for any h, T > 0, there exists a
constant C > 0, independent of h and t, such that, for 1 <m < M — 1,

2 112
ll-,m'f‘j

dmt3 Ve
h

2 2
5.5 <26 +c|vepm|"+c|verm|

—1,h

u+2

+5C2 |VéE, +c7z’”+%, (3.71)

where Cy = C3C1, Co is the HL(Q) — L*(Q) Sobolev embedding constant, Cy is a

1
bound for OmaxT R™T2 is the consistency term given in (3.50).
<t<

Proof Define Ty, : Sh — S’h via the variational problem: given ¢ € S’h, find & € S'h
such that a (T;(¢), &) = (¢, &) forall € € Sp. Then, setting v = Ty, <575¢ m+2> in

(3.17a) and combining, we have

e )

—1,h

n (‘71 +1 +62m+2 T, <8 g¢ m+2>)

—b(¢>’”+z u"t T, (5 g ’"*2))+b< FrT T, (5,5,‘1”’"”5))
= —861(5“ ", (3 g m+2)) (af" 1yt T, (3,5,‘1’”””%))
)

—b<¢h+2 gumt ot T, (5,5"’ m+2))

1
(Stg;lb,m+2
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1 1 7
< o |vermT| st 4ot 4ot ‘Th< 5¢’”+2)H
—1,h
1
ot et ] st )
L4 L4
1
T O I VS B ‘Th (5 g ’"*2)”
L()Q
p,m—&—2 2 1 ¢7m+2 2 m+% m+% 2
veE, + — |6:€, +C o, + 0,
4 —1,h
1 1
+C o2 ‘VT;, (5 5”*2) LG |vErm HVTh <5T5,‘f‘m+2)H

+CH L Gl

2 2
1 1 2
2| ygimts +5 5.E0 T +ch5,‘f*”’H +c|vepm |
—1,h
5C3 || o sumtd |
+ 2 vam +CR™ 1, (3.72)

for1 <m < M — 1, where we have used Lemmas 3.4, 3.5, and 3.7. The result now
follows. O

Lemma 3.13 Suppose that (¢, i, a, p) is a weak solution to (3.11a)—(3.11d), with
the additional regularities described in Assumption 3.1. Then, for any h, t > 0, there
exists a constant C > 0, independent of h and t, but possibly dependent upon T, such

that, forany 1 <m < M — 1,
€ ¢,m+1 2 &,m 2 1
2 (vt = lvet ) + 5 (]
2t 2ty

2 1
ET 1
e (5352””’,8155’”2)

e[ - er)

e+
ve,"T?

um+
+_ 2

2 2
: =l et

-I-— HVS

rc|vepm [+ et + o fepnt | + crmet, G73

Proof This follows upon combining the last two lemmas and choosing « in (3.49)
appropriately. O

Using the last lemma, we are ready to show the main convergence result for our
second-order splitting scheme.

Theorem 3.14 Suppose (¢, u,u, p) is a weak solution to (3.11a)—(3.11d), with the
additional regularities described in Assumption 3.1. Then, provided that 0 < T < 10,
with some 1 sufficiently small,
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M-1 2

e (o Y SRR M (L Rl
o m=1
senfeten). (3.74)

for some C(T) > 0 that is independent of T and h.

Proof Using Lemma 3.13, we have

(HW‘”’"*‘H [vern) o5 (

ey [ e i?) o [oap |

2
1 2 2
+ n H V5,u m+2 + g <vag),m+l _ VSZ),m H _ H Vgg,m _ ngb,m IH >
2 2 )
celpst el relpae el el
£ CRM™, (3.75)

Now, applying © an:l to (3.75), and observing that Ef’m = 0 and E;ll’m = 0, for
m =0, 1, leads to

ot fere o135 (foet [ + s~
2 m=1
+1
< Gt Z R34 Cyr Z |ved ’”H +Cst Z lesm|2. (376
m=1

fO0<t<1:= ﬁ < C ,since 1 < ﬁ < 2, it follows from the last estimate

that
13 2 2
2 T 1
L1 Hom+
a3 (HV% ’ )
m=1

t t
C3t mad Gyt H ¢,m”2 Cst wm
mXZ:lR 2+1—C4rmX::2 Ve XZ:HVE I

um+2

[vezest ]+ | va

IA

¢ 2
203Co(t* + 1) +2C77 Y (”vs,f’”’ |+ [vep ||2) , (3.77)
m=2

where we have used the fact that © Z,AZ;II R+ < Ce(t* + h%9) and where C7 :=
max (Cy4, Cs). Appealing to the discrete Gronwall inequality 4.1, it follows that, for
any
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¢ 2 2
2 2
vaf,eﬂn +‘g}?,e+1” +£Z (vauerz +va;llm+2 )
2
m=1
< 2C3C6(t* + h™) exp(2C7T), (3.78)
forany 1l <€ <M — 1. O

Remark 3.15 From here it is straightforward to establish an optimal error estimate of
the form

M—

o (e oo ) e X ([t frenet )
o —1
< C(T)(x* + h?9) ) (3.79)

using £ = c‘,’f +£& ¢, et cetera, the triangle inequality, and the standard spatial approx-
imations. We omit the details for the sake of brevity.

Acknowledgements This work is supported in part by the Grants NSF DMS-1418689 (C. Wang), NSFC
11271281 (C. Wang), NSF DMS-1418692 (S. Wise), NSF DMS-1008852 (X. Wang), and NSF DMS-
1312701 (X. Wang).

4 Some discrete Gronwall inequalities

We will need the following discrete Gronwall inequality cited in [22,29]:

Lemmad4.1 Fix T > 0. Let M be a positive integer, and define T < % Suppose

{am},A,:I:(), {bm}M o and {cm}m _o are non-negative sequences such that t Zm —0 Cm <
C1, where Cy is independent of T and M. Further suppose that,

V4 —1
ag+erm§C2+tZamcm, Vi<i<M, 4.1)
m=0 m=0

where Co > 0 is a constant independent of T and M. Then, for all T > 0,

4 —1
ag+7 Y b < Crexp (chm> < Crexp(Cy), V1<t<M. 4.2)

Note that the sum on the right-hand-side of (4.1) must be explicit.
In addition, the following more general discrete Gronwall inequality is needed in

the stability analysis.

r

e

{am}m —o (bm }M o and {cm}m —o are non-negative sequences such that t Zm —0 Cm <

Lemmad4.2 Fix T > 0. Let M be a positive integer, and define T < Suppose
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C1, where C is independent of T and M. Suppose that, for all T > 0 and for some
constant 0 < o < 1,

4 -1 m
ag+Tme§C2+rZCmZam_jaj, Vi<i<M, 4.3)
m=0 m=0 j=0

where Cy > 0 is a constant independent of T and M. Then, for all T > 0,

C
1l -«

4
az-l—fzbmf(cz-i—aocl)eXP( ) VisesM. @44
m=0

Proof We set Ay 1= ﬁ > 1. A careful application of induction, using (4.3), yields
the following inequality:

4 4
ag+t) bp<[[dim Yist=M, 45)

m=0 m=1

where

1 k .
d(m={ ey (1+dkey) if l§m§£—1. 4.6)

Cr +apt Zi;(l) ok if m=1¢

Meanwhile, the following bound is available:

dom = +1te)(4+atey) - (1+a™ rey)

IA

exp(tem) explatcey) - - - expa@™ ' tem)
= exp (r(l +a+--- +am71)cm> <exp(Agcmt), V1i<m<tl-—1,
“4.7)
which in turn leads to
de,lde,z . 'dZ,Z—l < eAaCH'eAasz . eAmc‘z’lr

< exp(Agt(ci +cp+---+ce—1)) < exp(AyCy). (4.3)

On the other hand, we also have

dpy = Cr+apt <C0 +ca+---+ Cg_lotl_l>

IA

Cy + apt (co+c1 ~I—~-+c£—1> < Cy +aoC. 4.9

In turn, a substitution of (4.8) and (4.9) into (4.6) results in (4.4), the desired estimate.
The proof of Lemma 4.2 is complete. O
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