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Abstract

This dissertation investigates numerical schemes for the Cahn-Hilliard equation
and the Cahn-Hilliard equation coupled with a Darcy-Stokes flow. Considered
independently, the Cahn-Hilliard equation is a model for spinodal decomposition and
domain coarsening. When coupled with a Darcy-Stokes flow, the resulting system
describes the flow of a very viscous block copolymer fluid. Challenges in creating
numerical schemes for these equations arise due to the nonlinear nature and high
derivative order of the Cahn-Hilliard equation. Further challenges arise during the
coupling process as the coupling terms tend to be nonlinear as well. The numerical
schemes presented herein preserve the energy dissipative structure of the Cahn-
Hilliard equation while maintaining unique solvability and optimal error bounds.
Specifically, we devise and analyze two mixed finite element schemes: a first order
in time numerical scheme for a modified Cahn-Hilliard equation coupled with a non-
steady Darcy-Stokes flow and a second order in time numerical scheme for the Cahn-
Hilliard equation in two and three dimensions. The time discretizations are based
on a convex splitting of the energy of the systems. We prove that our schemes are
unconditionally energy stable with respect to a spatially discrete analogue of the
continuous free energies and unconditionally uniquely solvable. For each system,
we prove that the discrete phase variable is essentially bounded in both time and
space with respect to the Lebesque integral and the discrete chemical potential is
Lesbegue square integrable in space and essentially bounded in time. We show these

bounds are completely independent of the time and space step sizes in two and three



dimensions. We subsequently prove that these variables converge with optimal rates
in the appropriate energy norms. The analyses included in this dissertation will
provide a bridge to the development of stable, efficient, and optimally convergent
numerical schemes for more robust and descriptive coupled Cahn-Hilliard-Fluid-Flow

systems.
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Chapter 1

Introduction

Consider a binary fluid in a closed container consisting of two distinct atomic or
molecular components, oil and water for example. Suppose, for the sake of illustration,
that one is colored white (say the A atoms), and the other is colored black (say
the B atoms). Further suppose that at high temperatures, the fluid is perfectly
and uniformly mixed. The fluid would then appear grey in color, due to the
uniform distribution of volume fractions throughout the container. But, when the
mixture is suddenly cooled below a certain temperature, the fluid separates into two
distinguishable phases with one nearly perfectly white (A-rich phase), and another
nearly perfectly black (B-rich phase). Following this, on a very slow timescale, some
of the white and black phase regions grow while others shrink, in a process called
coarsening. 'The total volumes of the white and black fluid phases must remain
essentially constant because the number of white and black atoms (or molecules) in
the system is fixed. This phenomenon, depicted in Figure 1.1, is termed spinodal
decomposition [49], and it occurs in both solid and fluid binary systems. The theory
for spinodal decomposition was developed by Cahn and Hilliard [6, 7] as a way to
describe certain phase transformations in solid-state alloys during quenching (rapid
temperature reduction). The model they derived is known as the Cahn-Hilliard (CH)

equation and is defined below.



Figure 1.1: [61] Simulation snapshots of phase separation by which two fluids decompose.

Let Q € R?% d = 2,3, be an open domain and let ¢ : Q — R indicate the fluid
states described above. For a subdomain ©; C €2 which is comprised entirely of A
atoms, ¢(x) = +1 for all x € ;. Likewise, ¢(x) = —1 for all x € Qy C 2 means
the subdomain 25 is comprised entirely of B atoms and the state ¢ = 0 represents
a perfect 50-50 mixture of A and B, et cetra. Now suppose the fluid has an energy
that depends upon ¢ as follows [7]:

B = [ {1 5iver ax s =@ -1 )

where ¢ is a positive constant and f is the homogeneous energy density. The Cahn-

Hilliard equation is a bistable (time-dependent) gradient flow with respect to the total

energy F [6, 7]:
Orp = eAp, in Qp, (1.2a)
po=0sFE =¢"" ((b?’ — gb) — Ao, in Qr, (1.2b)
On = Ot = 0, on 092 x (0,7, (1.2¢)



where p is the chemical potential, d,E denotes the variational derivative of E with
respect to ¢, and the total energy E represents a competition between f, which
is minimized by the spatially uniform states ¢ = +1, and the gradient energy
density, £|V¢|?, which penalizes any derivatives of ¢, allowing interfacial energy to
be modeled. By bistable, we mean that the energy is composed of a convex piece
and a concave piece. (See Figure 1.2). The boundary conditions represent local
thermodynamic equilibrium (9,,¢ = 0) and no-mass-flux (9,4 = 0). The equation is
mass conservative, d; [, ¢(x,t) dx = 0 — which reflects the fact that the total numbers

of the components remain fixed — and energy dissipative, d;F/ = —¢ ||V/LH2LQ <0.

Figure 1.2: Demonstration of the bistable property exhibited by the Cahn-Hilliard energy. Energy
density is measured along the y-axis and the phase parameter is measured along the x-axis.

At later times, i.e., in the coarsening regime mentioned above, solutions of the
CH equation have the following diffuse interface structure (see Figure 1.3): pure
phase A regions are separated from pure phase B regions by diffuse interfaces of
thicknesses ~ ¢, such that the indicator function is essentially a hyperbolic tangent
in the direction perpendicular to the interface. Indeed, for a hypothetical one-
dimensional system, non-trivial energy minimizers of E are (essentially) given as
¢(r) = £ tanh (%), which represents a “diffuse” interface between fluids A (+1)
and B (—1) of thickness O(g). This concept, where a material interface is described
by the continuous variation of an indicator function, precedes the work of Cahn and

Hilliard, dating back to van der Waals and Lord Rayleigh [53, 54, 60] and is commonly

referred to as diffuse interface theory.
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Figure 1.3: (a) A 2D dumbbell-shaped droplet described by a diffuse interface in a time snapshot
from a Cahn-Hilliard simulation. Where ¢ ~ +1 (resp., —1), we have fluid phase A (resp., B). (b)
As ¢ is decreased, the diffuse interface describing a hypothetical 1D particle becomes thinner. The
limit as € — 0 is a characteristic function, which represents the “sharp” interface profile.

Besides describing the process of spinodal decomposition, the Cahn-Hilliard
equation is commonly paired with other models — generally through nonlinear coupling
terms — that describe important multi-phase, multi-physics processes. Prominent
examples of these multi-physics models include the Cahn-Hilliard-Navier-Stokes
equation, describing two-phase flow [1, 21, 29, 30, 40, 41, 46, 48, 56], the Cahn-
Hilliard-Hele-Shaw equation [44, 45, 62] which describes spinodal decomposition of
a binary fluid in a Hele-Shaw cell, and the Cahn-Larché equation [25, 28, 42, 64]
describing solid-state, binary phase transformations involving coherent, linear-elastic
misfit. The role the Cahn-Hilliard equation plays in the pairing is to provide a diffuse
interface-type description of the boundary separating the phases. The advantage is
that explicit tracking of the motion of interfaces in the system is not required as the
motion is captured by the indicator function. It is important to note that as the
interfacial width parameter, €, goes to zero, the diffuse interface profile approaches a
sharp interface profile as demonstrated in Figure 1.3. Chapter 3 of this dissertation
will focus on the pairing of a modified Cahn-Hilliard equation with a Darcy-Stokes
equation which can be used to describe the flow of a very viscous block copolymer
fluid [11, 10, 51, 52, 66, 67]. The Cahn-Hilliard equation is modified by adding a

“orowth” term shown here in the definition of the chemical potential:

8t¢ = 5AN7 H= 5¢E = (¢3 - ¢) - 5A¢ AN (¢ - C_bo) ) an¢ = an:u =0,

(1.3)

m | =



where A~! is the inverse laplacian operator relative to the natural boundary
conditions and ¢, = ﬁ fQ ¢o(x)dx. Hence, the modified Cahn-Hilliard-Darcy-Stokes

problem with natural and no-flux/no-flow boundary conditions may be written as:

O =eAp—V - (ugp) inQy, (1.4a)
p=c'(¢*—¢) —eAp+¢ inQy, (1.4b)
—AE=0(¢p—¢y) inQy, (1.4c)

wou — ANAu+nu+ Vp =~vuVe in€yp, (1.4d)
V-u=0 inQyp, (1.4e)

O = Oppt = 0 =0, u=0 ondQ x (0,7T). (1.4f)

Here ¢ represents the polymer concentration, @, is the initial mass average over the
domain €2, and u and p represent the fluid velocity and pressure, respectively. We
assume that the dimensionless model parameters satisfy €,v, A\ > 0 and n,w,6 > 0.
The parameters are understood such that, € is the interfacial thickness, A is the fluid
viscosity, 1 is the Darcy drag parameter, and v is a surface tension. Furthermore,
the term £ represents a non-local interaction that can suppress or enhance separation
according to the sign of # which represents the non-local interaction strength. The
multi-physics coupling terms, yuV¢ in the flow equation and V- (u¢) in the diffusion
equation, essentially represent the surface tension-flow interaction. The parameter w
is used to indicate whether or not the flow may be taken as steady and takes on only
the values w = 0 for steady flow and w = 1 for non-steady flow. We remark that it is
possible to replace the right-hand-side of Equation (1.4d), the excess forcing due to
surface tension, by the term —y¢Vpu. The equivalence of the resulting PDE model
with that above can be seen by redefining the pressure appropriately.

For the coupled system we consider an energy which is closely related to (1.1):

E(u,¢) = /Q {iyuﬁ + §(¢2 —1)%+ §|v¢!2 + g IV (A7 (o —50))|2} dx. (1.5)



Figure 1.4: [13] Phase separation of a two-dimensional (very viscous) block-copolymer fluid in shear
flow. The parameters are 2 = (0,8) x (0,4), € = 0.02, v = 0.4, § = 15000, w = 0, n = 0, ¢, = —0.1.
The shear velocity on the top and bottom is F2.0, respectively. Periodic boundary conditions are
assumed in the z-direction. The time unit referenced above is 7 = 0.02. The long-range 6 term
suppresses phase separation and coarsening, relative to the case § = 0, and relatively long and thin
phase domains emerge. Note that ¢uin ~ —0.75 and ¢pax ~ 0.75. These simulation results are
comparable to other studies [66, 67] that use a different dynamic density functional approach. With
a slightly larger value of 6, the phase domains remain as dots and can form into hexagonal patterns,
as in [67].

As with (1.1), this energy typically “prefers” the fluid phase states ¢ ~ £1 (the
pure phases) separated by a diffuse interface of (small) thickness e. However, the
long-range energy described by the last term can change this picture [3, 10, 11, 51].
Specifically, when 6 > 0, the energy term & ||V (A7 (¢ — ¢,)) Hiz in (1.5) is convex
and stabilizing, and this energy tends to stabilize (or suppress) both the phase
separation and the coarsening processes. This is observed in Figure 1.4 where we
show simulation snapshots using the equations to describe the phase separation of a
block-copolymer in shear flow. The parameters are given in the caption. If # < 0 the
term is concave and destabilizing. In this case, the process of phase separation will

be enhanced. Throughout this dissertation we assume that 6 > 0.



Due to the extensive use of the Cahn-Hilliard equation in multi-physics modeling,
there is a need to develop stable, efficient, and convergent numerical schemes for the
equation. This is a challenge because the Cahn-Hilliard equation is highly nonlinear
and of high (derivative) order. For instance, defining 7 and h to be the time and
space steps sizes, respectively, if naive explicit time stepping strategies are used, a
restrictive stability constraint of the order 7 < Ch?* (CFL condition) must be enforced
[59]. The goal in creating numerical schemes for the Cahn-Hilliard equation and
equations such as the modified Cahn-Hilliard-Darcy-Stokes equation is to preserve
the energy dissipative structure of the equations at the time-discrete level. As an
added benefit, one would also hope that the schemes are uniquely solvable, given any
time step size. The first property is called unconditional energy stability and the
second is unconditional unique solvability. It is also important, if possible, to prove
that one’s method is convergent, with optimal error bounds.

The numerical schemes presented in this dissertation utilize an energy splitting
approach similar to the convex splitting technique popularized by Eyre [20]. The
standard convex splitting technique of Eyre is first-order accurate in time and uses
the fact that the energy (1.1) may be represented as the difference between two purely

convex energies:

1 Q 1
B(9) = E(9) = Eu(9),  Eu(¢) = 6l + 5 IVoll7: + LN IOE 5o 19llZ:

4e”’

(1.6)
The principal idea is to treat the variation of E. implicitly and that of E., explicitly.
The concept can be extended to coupled systems such as the modified Cahn-Hilliard-
Darcy-Stokes as will be demonstrated in Chapter 3, and with slight modification,
to second-order accuracy in time, as was shown originally in [37] and as will be
exhibited in Chapter 4. The main advantages of the convex splitting approach are
that the resulting schemes are unconditionally energy stable and unconditionally
uniquely solvable. An added advantage is that optimal-order error estimates are often

obtainable in this framework with fewer time and space step parameter constraints.



Furthermore, the numerical schemes presented in Chapters 3 and 4 retain the mass
conservation properties and dissipative structure observed in the both the Cahn-

Hilliard equation and the Cahn-Hilliard-Darcy-Stokes system.

1.1 Summary of this Dissertation

The importance of the work presented by this dissertation is reflected in the growing
popularity in the use of diffuse interface models in multi-physics applications. As
such, there is a need to develop stable, efficient, and convergent numerical schemes for
the Cahn-Hilliard equation and couple Cahn-Hilliard-fluid-flow systems and extensive
research has been conducted in this area, in particular for first order (in time) schemes,
see [3, 8, 16, 17, 18, 21, 23, 26, 34, 31, 39, 40, 41, 62] and the references therein. The
analyses presented on numerical schemes for coupled Cahn-Hilliard-fluid-flow systems
focus on two types of limited convergence results: (i) error estimates and convergence
rates for the semi-discrete setting (time continuous) and/or (ii) abstract convergence
results with no convergence rates. Optimal error estimates in the energy norms
for the fully discrete schemes of coupled Cahn-Hillvard-fluid-flow systems are lacking
in the literature. Furthermore, second order (in time) schemes are less commonly
investigated due to the additional challenges these schemes present. However, we do
note the recent works [4, 8, 14, 15, 26, 57, 55, 65].

The work presented in this dissertation is unique in the following sense. We are
able to prove unconditional unique solvability, unconditional energy stability, and
optimal error estimates for both a first order (in time) fully discrete finite element
scheme in three dimensions for a modified Cahn-Hilliard-Darcy-Stokes system and a
second order (in time) fully discrete finite element scheme in three dimensions for the
Cahn-Hilliard equation. Specifically, the stability and solvability statements we prove
are completely unconditional with respect to the time and space step sizes. In fact,
all of our a priori stability estimates hold completely independently of the time and

space step sizes. We use a bootstrapping technique to leverage the energy stabilities



to achieve unconditional L>°(0,T"; L*(£2)) stability for the phase field variable ¢, and
unconditional L*°(0,T; L?(Q)) stability for the chemical potential j1;,. Obtaining these
stabilities unlocks a convergence analysis where we are able to prove optimal error
estimates for the phase field variable ¢, and chemical potential i, in the appropriate
energy norms.

The remainder of this dissertation proceeds as follows. In Chapter 2, we define
our notation and introduce several useful definitions, lemmas, and theorems. In
Chapter 3, we provide solvability, stability, and error analyses for a first order mixed
finite element scheme for the modified Cahn-Hilliard-Darcy-Stokes system (1.4a)—
(1.4f). The chapter begins with a weak formulation of the system to be analyzed and
presents the state-of-the art on numerical schemes for coupled Cahn-Hilliard fluid
flow problems. We then introduce the mixed finite element scheme. Once the scheme
is defined, a detailed analysis for unique solvability and unconditional stability is
presented. The chapter continues with an error analysis which demonstrates that
the mixed finite element scheme converges optimally in the appropriate energy norm
with certain regularity assumptions on weak solutions of the Cahn-Hilliard-Darcy-
Stokes equation (1.4a)—(1.4f). To conclude the chapter, we show the results of some
numerical experiments which confirm the results of the analyses presented. Chapter 4
mimics the structure of Chapter 3 for the second-order-accurate-in-time, fully discrete,
mixed finite element scheme for the Cahn-Hilliard problem (1.2a)-(1.2¢). Finally, in

Chapter 5 we present plans for future research.



Chapter 2

Mathematical Preliminaries

This dissertation employs standard and non-standard mathematical notation. That

notation which will be used frequently throughout the dissertation is defined here.

2.1 Notation

Let Q C RY, d = 2,3, be an open polygonal or polyhedral domain and assume this
to be true for the remainder of the dissertation. We use the standard notation for

Lebesgue measurable functions, LP(Q) := {u : |Ju||;, < co} where

llull = (/ |u(:17)|pdx) “for 1 <p<oo and ||ul;~ = esssup{|u(z)|: 2z € Q}.
0

The notation (-,-) will be used to denote the standard L-inner product defined
for all u,v € L*(Q) as

(u,v) ::/qudx.

10



Additionally, this dissertation employs the frequent use of three non-standard inner

products prefaced by a, b, and c:
a(u,v):= (Vu, Vo), b,v,v):= (V- -v,v), and c(v,q) :=(V-v,q). (2.1)

A bold-faced font is used to denote a vector or vector valued function, v € R". The
symbol V1 is standard notation representing the gradient of the function ¢ and V-
is standard notation representing the divergence of the function .

Using the notion of a weak derivative, the Sobolev space, W*? defined as
Wk? .= {u: D € LP(Q),Y0 < |a| < k},

has norm

B =

[wllyrs = Z |1 D%ul|7, )

0<|al<k
for any non-negative integer k. We furthermore adopt the notations H* = W*? H|}
for H' functions which are zero on the boundary, 9Q, and H}(Q) := [H&(Q)]d as
the vector valued space with dimension d of H' functions which are zero on 92. We
define a non-standard notation H~1(Q2) := (H*(Q))" to represent the dual space of
HY(Q) and H1(Q) := (H{(Q))" to represent the dual space of H{(Q2). A duality
paring between H~1(Q2) and H'(f2) in the first instance and a duality paring between
H1(Q) and (H}(2))" in the second is denoted by (-, -). Additional spaces which

11



will be used throughout this dissertation are defined as follows:

b
DO

= {v € H*(Q)|0,v = 0 on 9Q};
{ve L*(Q)| (v,1) = 0};

[\
w

)
)

Q) == H'(Q) N Lg(Q);
)

[\
ot

~~ ~~ P ~~ ~~
D e~
S~— ~— S— S— S~—

={ve H'(Q)]|(v,1) =0};
{v e Hy(Q[(V-v,q) =0,Vq € L§(Q)}.

Furthermore, we note that the notation ®(t) := ®(-,t) € X views a spatiotempo-
ral function as a map from the time interval [0, 7] into an appropriate Banach space,
X. Therefore, the Lebesgue space LP(0,T; X) consists of all those functions ®(¢) that
take values in X for almost every ¢ € [0, T, such that the L?(]0,7"]) norm of ||®(¢)||
is finite.

In order to define the finite element spaces, let M be a positive integer and 0 =
ty < t; < --- < tyy = T be a uniform partition of [0, 7], with 7 = ¢; — t;_1, i =
1,..., M. Suppose T, = {K} is a conforming, shape-regular, quasi-uniform family
of triangulations of €2. With r representing a positive integer, we define the sets
M} and M!, such that M} := {v e C°(Q) |v|x € P.(K),V K € Tp} C H'(Q) and
Mh

Ty

o = MPN H(Q). Then, for a given positive integer ¢, we define the following

finite element spaces:

Sh = /\/lf;; (2.7)
Sy == S, N LA(Q); (2.8)
X, — {v e [ e My i=1,... ,d}; (2.9)
Vh::{vexh‘(v-v,w):o,vweﬁh}. (2.10)

Note that Vj, ¢ V., in general.

12



2.2 Definitions, Lemmas, and Theorems

In this section, we list several definitions, lemmas, and theorems which will be useful
throughout this dissertation. Most of the lemmas and theorems listed below are
commonly found in mathematical literature and are therefore presented without proof.

Those which are not commonly found are either supported with proof or referenced.

Lemma 2.2.1. Young’s Inequality: Ifa,b> 0 and 1 < p,q < oo with Il)+% =1,
then

ab < ea? + C(e)b?, (2.11)

where C(€) = (ep) rq L.

Lemma 2.2.2. Holder’s Inequality: Let 1 < p,q < oo with %%—% =1 and suppose
that f € LP(Q) and g € LY(Q). Then fg € L'(Q) with

[ 1591z =1 5glls < 1110 gl 212

Lemma 2.2.3. Poincare’s Inequality: Suppose 1 < p < oo and that 2 C R" is
bounded, connected, and open with a Lipshitz boundary. Then there exists a constant

C, depending only on £ and p, such that for every function w in the Sobolev space
Wie(q),

|u =, < ClVul L, (2.13)
where

u= ﬁ/{zu(x)dx

is the average value of u over Q, with |Q| standing for the Lesbegue measure of the

domain €.
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Theorem 2.2.4. Riesz Representation Theorem. Any continuous linear

functional L on a Hilbert space H can be represented uniquely as

L(v) = (u,v) (2.14)

for some u € H. Furthermore, we have

1A = Nlull (2.15)

where || L], = sup
0#£veH

Remark 2.2.5. [t is important to note that the notation {p,v) may additionally be

interpreted as the action of the linear functional p on the test function v.

Definition 2.2.6. The Linear Operator T: The linear operator T : H(Q) —
HY(Q) is defined via the following variational problem: given ¢ € H=X(Q), find T(¢) €
HY(Q) such that

(T ) =(¢x)  VxeH Q) (2.16)

Remark 2.2.7. The operator T is well-defined, as is guaranteed by the Riesz

Representation Theorem.

Lemma 2.2.8. Let (, £ € POI_I(Q) and, for such functions, set

(€ &)1 :=a(T(C), T(€)) = (¢, T(E)) = (T(C),€) - (2.17)

(-, - )y-1 defines an inner product on POI_I(Q), and the induced norm is equal to the

operator norm:

()
Cllygor =4/((, ()1 = sup ————. 2.18
|| ||H ( )H 07$er1 ”VXHL? ( )
Consequently, for all x € H(Q) and all ¢ € H(Q),
(CO < NSl VXl g2 - (2.19)
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Furthermore, for all ¢ € L3(2), we have the Poincaré type inequality

1<l -1 < ClIC 2 s (2.20)

where C > 0 is the usual Poincaré constant.

Proof. We begin by showing (-, -);-1 defines an inner product on HY(Q). Let
C, 1, €€ Ijlfl(Q) with A\, u € R. By definition (2.17),

A+ 1, &) g = (AC+ ), T(E)) = A(G, T(E)) + (4, T(E))
=AGE) g +u 8y,
(€ &) g1 = a(T(C), T(§) = a(T(), T(C) = (£, g
(€ Qg =a(T(C),T()) =0

with equality if and only if ( = 0. The equivalence of the induced norm and the
operator norm follows from the definition of the inner product and the Cauchy

Schwartz inequality,

_ _a(TQ.TO) _ 6T
(€O = INTO e = T, ~ 9T

(¢ 01 o (T(6), x) |

< sup —=——F— = sup
0#£xeH! VXl 2 0#xEH?! Vx|l 2

VT2 Vx| /
— VT 2 — y —1 .

Inequality (2.19) easily follows from the definition of the operator norm,

(G0l < KEGX)
¢l -1 = sup > .
’ |H 0#£yEH! HVXHL2 HVXHL2

Finally, we use definitions (2.17) and (2.18) and the Poicare inequality to obtain

IIlzr-+ = (T(C), ) < HTOM g ISl < CUVTON g2 €l 22 = CNE g1 IS e
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where C' > 0 is the usual Poincaré constant. O

Lemma 2.2.9. Elliptic Regularity /5/: Let Q be bounded. Then,
[ullwze < NAullp, 1 <p<p

where p depends on the smoothness of 0S).

Definition 2.2.10. The Ritz Projection: The operator Ry, : HY(Q) — Sy, is the

referred to as the Ritz projection for the Neumann problem and is defined by:

a(Rup—6,x) =0, Vx € S, (2.21)

with
(Rngp — ¢,1) = 0.

Theorem 2.2.11. An Approximation Theorem [5/: Suppose we have a family
of subspaces S, C H™(S)) with the property that, for all p € H*(Q) and 0 < h <1,

inf [l¢ = x|l ym < CR™ (0] (2.22)
XESh

and let s <m and m <r < k. Then there is a constant C such that

inf (P [|¢ — x| gs + 2" |0 = Xl grm) < CR" 9] v
XESh

provided ¢ € H"(Q).

Remark 2.2.12. The construction of the finite element spaces used throughout this
dissertation satisfy assumption (2.22) in Theorem 2.2.11.

Theorem 2.2.13. Ritz Projection Error [5, 59]: The Ritz Projection for the

Neumann problem satisfies the following for any ¢ € HI(S),

|6 = Budll 2 + 1[IV (¢ = Brd)l 2 < ChT 9] 1o -
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Proof. We follow the proofs provided in both [5] and [59]. We start with the estimate

for the error in the gradient. By the error estimate above,

IV (Fnd = @)z < inf 1V(6 = )llze < CH" {19l

For the error bound in the L?-norm, we use a duality argument. Let £ € L*(Q) be

arbitrary and take v € H?(f2) as the solution of
—AYp=¢ inQ, with 9,00 =0 on 0.
Then for Ry € Sy, we have

(Bno = ¢,€) = — (Bng — &, AY)
= (V(Rrp — ¢), Vi)
= (V(Ba¢ — 9), V(Y — Rp1p))
S IV(RRG = D)l 2 [V = Buib)|l 2

where we have used the definition of the Ritz projection for the Neumann problem
and the Cauchy-Schwarz inequality. Hence, using elliptic regularity and assumption

(2.22),

(Bnp — ¢,6) < ChI M|l gy Ch (¢l g2 < CH [0 g 1A% 12 < CRT [l o lIE ] 2

Choose & = R,¢ — ¢ to conclude the proof. n

Definition 2.2.14. The Darcy-Stokes Projection: The operator (P, P,) : V X
L2 — V, x Sy, is referred to as the Darcy-Stokes projection and is defined by:

Aa(Ppu—w,v)+n (Ppu—u,v)—c(v,Bpp—p) =0, VveX,, (2.23)

c(Ppu—u,q) =0, Vqe Sh. (2.24)
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Theorem 2.2.15. Darcy-Stokes Projection Error [5/: The Darcy-Stokes Projec-

tion above satisfies
[Pru =l + [[Brp = pll 2 < Ch ([0 o + [Pl o) »

for any u € H™Y(Q) and p € HI(Q).

Definition 2.2.16. The Discrete Laplacian: We define the discrete Laplacian,
Ny 0 S, — f;'h, as follows: for any v, € Sy, Apvy, € So’h denotes the unique solution to

the problem
(Apvp, x) = —a(vp,x), V x E Sh. (2.25)

In particular, setting x = Apvy, in (2.25), we obtain
HAhvhHiZ = —a (vn, Anvp) -

Theorem 2.2.17. A Local Inverse Inequality [5/: Let (K, P,N) be a reference
finite element such that ph < diam K < h and P is a finite-dimensional subspace
of WP(K)YO\W™4(K), where 1 < p,q < oo and 0 < m < I. Then there exists
C = C(ﬁ,f(,l,p,q,p) such that for all v € P, we have

[ollre ) < Cpm—l+n/p=n/q [ [P—

where ([A(, 75,./\7) is the affine-equivalent finite element to the reference finite-element.

Lemma 2.2.18. An Inverse Inequality [5/: Let {T,},0 < h <1 be a conforming,
quasi-uniform triangulation of a polygonal or polyhedral domain 2 C R"™. Let
(K,P,N) be a reference finite element such that ph < diam K < h and P is a finite-
dimensional subspace of W'P(K)(\W™4(K), where 1 < p,q < 0o and 0 < m < .
Then there ezists C = C(l,p,q, p) such that for all v € Sy, we have

Q) < Chmflerin(O,n/pfn/q) H,U

HUHlep( HW"NI(Q) .
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Definition 2.2.19. The Linear Operator T,: The invertible linear operator Ty, :
§h — S’h 1s defined via the variational problem: given ( € gh, find T(C) € S*h such
that

a(Th(€),x) = ((,x) VX E S (2.26)

Remark 2.2.20. The variational problem used to define the linear operator T, clearly

has a unique solution because a (-, -) is an inner product on S,

Lemma 2.2.21. Let (, £ € S, and set

(€, €) 1 7= a(Th(C), Tw(&)) = (¢, Tal(€)) = (Tw(C),€) - (2.27)

(-, )y, defines an inner product on So’h, and the induced negative norm satisfies

N R 229)

Consequently, for all x € S, and all € é*h,
(€ < ISl =y VX2 - (2.29)

The following Poincaré-type estimate holds:
I¢ll-r < CNCle s V€€ S, (2.30)

for some C' > 0 that is independent of h. Finally, if Ty is globally quasi-uniform, then

the following inverse estimate holds:
Il < CHTM ISl V€ S (2.31)

for some C' > 0 that is independent of h.
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Proof. The proof follows similarly to Lemma 2.2.8 with the inverse inequality

remaining. Set y = ¢ in (2.29). Then by the inverse inequality (2.2.18), we have

€172 < NCH_yn IVC I < CRTHICH g 5 IS e -

Lemma 2.2.22. Suppose g € H'(Q), and v € Sy. Then
(g, )l < C NIVl lvll_y s (2.32)

for some C' > 0 that is independent of h.

Proof. 1f g € Sp,, we can apply Lemma 2.2.21 directly. Otherwise, using the triangle
inequality, the Cauchy-Schwarz inequality, and Lemma 2.2.21,

(g, ) < (9 = Bng,v)| + [(Bng, v)| < llg = Bugll 2 [0l 2 + 1V Ergll 2 ([0l -y -

(2.33)
Using the Ritz projection estimate,
lg = Bugllp2 < ClIV(g = Bug)ll2 < Ch IVl (2.34)
we have
(g, 0)] < ChIVgll o 0]l 2 + IV Ergll 2 0]l - (2.35)

Finally, using the (uniform) inverse estimate & [|v]| » < C'[|v||_, , from Lemma 2.2.21,
and the stability of the elliptic projection, ||VRugll;> < C||Vgll;2, we have the
result. O

Theorem 2.2.23. The Sobolev Embedding Theorem [2/: Let Q@ C R" be an
n-dimensional bounded Lipschitz domain, let m > 1 be an integer, and let p be a real

number in the range 1 < p < 0.
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Case 1. If either mp >n orm =n and p =1, then forn > 1

WmP(Q) — LYQ)  forp < q < oo.

Case 2. If n > 1 and mp = n, then

WmP(Q) — LYQ)  forp < q < oo.

Case 3. If mp < n and eithern —mp <n orp=1and n —m < n, then

np

WmP(Q) — L1Q) forp<q< .
n—mp

The embedding constants for the embeddings above depend only on n,m,p,q and the

dimensions of the Lipschitz condition on the domain.

Lemma 2.2.24. Gagliardo-Nirenberg Interpolation Inequality [50, 9/: Let
Q C R? be a bounded, connected, open set with Lipschitz boundary, 1 < q,r < oo,

%Sﬁgland

Suppose that u € LIQ with 0%u € L"(Q) for all |a| = m. Then 8°u € LP(Q) for all
|B| = 7, and there exists a constant C = C(d, j,m,p,q,r,€) > 0 such that

1-0
fulwss < C (lulfysr Il + ull) -

Lemma 2.2.25. Discrete Gagliardo-Nirenberg Inequality /9, 63/: Suppose Ty,
is a conforming mesh (no hanging nodes) that is globally quasi-uniform and § is a
convex polygonal domain. For all uw € Sy, there is a constant C' > 0 such that for
d=2,3,

d 3(4—4d)

lunllpee < C AR Ilunllze™ + C llunlls (2.36)
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where Ay, is the discrete Laplacian defined in 2.2.16.

Proof. Let I, : H*(2) — S;, denote the C°(€2) nodal interpolation operator. From
Brenner and Scott [5] for any u € H?*(Q),

d
lu — Zhul| o < CR*"2|u|g2(q), (2.37)

for some constant C' > 0. Then, by approximation properties, the inverse inequality

2.2.18, and elliptic regularity, we have

[ = upl o < llun — Zull o + | Znw — ul 1o
< Ch75 ||up, — Tpul| 12 + Ch || Tyu — ul o
< Ch™5 |Jup, — Thul| 12 + Ch> 5 ul g2
< Ch75 |Jup — ul| 12 + Ch™5 |Ju — Tyul| 12 + Ch®5 |ul oy

< O 5 fulzo) < CR*75 | Aull 2 = CR*75 || Ay 2.
Using the triangle inequality,
lull o < llunll s + CR>5 || Apull 2 (2.38)
Note from [5], we have the inverse inequality
[Vl 2 < O flunl (2.39)

Hence, it follows that

AR 2 < Ch725 Jup| 6 - (2.40)
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Now, using the Gagliordo-Nirenberg inequality 2.2.24, elliptic regularity, and repeat-

edly using inverse inequalities and the approximation properties above,

lnll o < lln = ot oo + 1 Z0te = ] o + [t e
< Ch™2 |fuy — Tyul| 2 + CH* % [ul 2 + [Jul] e
< Ch™% Jup = ull 2 + Ch™% u = Tyul 2 + Ch*% [|Aul| s + [[ul]

< Oh*% || Al 1o + [l
3(4—d)
< CR* || Aull o + [l 250 [ Au)PS 4+ Cllul o

3(4—d)

= CR*72 || Al o + ([l 57 | A IIQ(G Y+ Clull o

3(4—d)

< oL [l + O (lunllo + R4 Al ) ™ g 0
+C lunll o + CH*75 || Apun 2

3(4—d) 3(4—d)
<mﬂ4mWMﬁ%(wm““+mﬁmew““)m b

+ C |[unl|
3(4—d)
< CH2% | Apull o + C lunl;6 | Anu ||2“’ V4 C lunl o
o X6=3) o 26=3) oD
= OB 2 || A 757 [ Anull;5 + C llunll 75 | Anul 787 + C flunl| o
3(4—d) 3(4—d)

d d —
< 0 (W24 ) DAl +C 35 Nl

+ Clunl 16
3(4—d)

d
< Cllunllze™ N1 Anull 757 + C llunll o
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Lemma 2.2.26. The Discrete Gronwall Inequality [35, 43/: Fiz T > 0,

M
m=1’

T Z%:_ll " < Ch, where Cy is independent of 7 and M, and M1 ='T. Suppose that,

and suppose {a™} (™M and {¢"YMZ) are non-negative sequences such that

for all T >0,

M M—1
a4 7 Z b" < Cy+1 Z ac™, (2.41)
m=1 m=1

where Cy > 0 is a constant independent of T and M. Then, for all 7 > 0,

M M—1
a + 7 Z b" < Cyexp (7‘ Z cm> < Cyexp(Cy). (2.42)
m=1

m=1
Note that the sum on the right-hand-side of (2.41) must be explicit.

Theorem 2.2.27. Taylor’s Theorem. If f € C"([a,b]), then for any points

x,xo € [a,bl],
fk(xo) (z — xo)k + R, (x), (2.43)

where

R,(z) == /x () (x — s)"ds. (2.44)
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Chapter 3

The Numerical Analysis of a
First-Order Convex Splitting
Scheme for the
Cahn-Hilliard-Darcy-Stokes

System

Chapter 3 is devoted to the development and analysis of a first order in time convex
splitting numerical scheme for the Cahn-Hilliard-Darcy-Stokes problem. We will
begin by setting up a weak formulation of the problem (1.4a) — (1.4f) and presenting
the recent developments on numerical schemes related to this problem. We then
introduce our new mixed methods numerical scheme and prove that the scheme is
uniquely solvable. We furthermore show that the scheme is unconditionally stable
and optimally convergent and back up these findings with the results from a few

numerical experiments.
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3.1 A Weak Formulation of the Cahn-Hilliard-
Darcy-Stokes System

A weak formulation of (1.4a) — (1.4f) may be written as follows: find (¢, i, &, u, p)
such that

¢ € L*®(0,T;H(Q)NL(0,T; L=(Q)), (3.1a)
oo € L*0,T;H(Q)), (3.1b)
po€ L*0,T; H'(Q)), (3.1c)
u € L*(0,T;Hy(Q) NnL> (0,T;L*(Q)), (3.1d)
du € L*(0,T;H'(Q)), (3.1e)
p € L*(0,T;L3(Q)), (3.1f)

and there hold for almost all t € (0, 7))

(0ip, V) +ea(u,v) +b(d,u,v)=0 Yve HY(Q), (
(1, 0) —ea(p,y) — e (¢° — d,90) — (£,9) =0 Yo € H(Q), (3.2b

a(&Q)—0(0—00,¢) =0 V(e H(Q), (3.
w (O, v) + Aa(u,v)+n(u,v) —c(v,p) —vb(d, v, ) = VVGH%(Q), (3.2d
clu,q) =0 Vqge L), (3.2
with the “compatible” initial data
(b(O) = ¢ € HJQV(Q), 11(0) =uy e V. (33)

The system (3.2a) — (3.2e) is mass conservative: for almost every ¢t € [0,7],
(p(t) — ¢, 1) = 0. This observation rests on the fact that b(¢,u,1) = 0, for all
¢ € L*(Q) and all u € V. Observe that the homogeneous Neumann boundary
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conditions associated with the phase variables ¢, i, and £ are natural in this mixed
weak formulation of the problem. The existence of weak solutions is a straightforward
exercise using the compactness/energy method. See, for example, [24]. Furthermore,
in [9], it was shown that global-in-time strong solutions exist for a Cahn-Hilliard-
Stokes equation similar to the problem (1.4a)—(1.4f), with sufficiently smooth initial
data.

Now consider the energy

w 1 € 0 — 2
B, ¢) = = ulls + 42 62 = 1l + 51991 + 5 o = Bl

w 2 1 4 1 2 |Q| 19 2 9 — 112
= % ||u||L2 + 4_8 H¢HL4 - 2_6 ||¢||L2 + 4_5 + 5 ||V¢||L2 + § H¢ - ¢0HH—1 )

(3.4)

which is defined for all u € L*(Q) and ¢ € A := {¢p € H'(Q)| (¢ — ¢y, 1) =0}.
Clearly, if § > 0, then E(u,¢) > 0 for all u € L*(Q) and ¢ € A. For arbitrary 6 € R,
e >0, ue L*Q), and ¢ € A, there exist positive constants M; = M;(e,6) and
My = Ms(g,0) such that

0 < M (ullzz + [[¢ll7:) < E(w, ) + Mo, (3.5)

It is straightforward to show that weak solutions of (3.2a) — (3.2e) dissipate the energy
(3.4). In other words, (1.4a) — (1.4f) is a conserved gradient flow with respect to the
energy (3.4). Precisely, for any t € [0, 7], we have the energy law

t
B(®.00)+ [ (2190 + LR+ [Vue) - ) ds = B, on).

(3.6)

Formally, one can also easily demonstrate that p in (1.4b) is the variational derivative

of E with respect to ¢. In symbols, i = d4E. In Section 3.3, we present a numerical

scheme which follows a similar energy law making rigorous mathematical proofs for

unconditional unique solvability and unconditional energy stability possible.
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3.2 The State-of-the-Art on Numerical Schemes
for Coupled Cahn-Hilliard-Fluid-Flow

Equations

Galerkin numerical methods for the Cahn-Hilliard-Navier-Stokes (CHNS) and the
Allen-Cahn-Navier-Stokes equations have been investigated in the recent papers [1,
21, 22, 24, 38, 40, 29, 30, 57, 56]. The rigorous analyses of numerical schemes — mostly
for the matched-density CHNS system — can be found in [21, 22, 24, 38, 40, 29, 57, 56].
Specifically, there have been convergence proofs for these schemes, but all of these
analyses focus on two types of limited convergence results: (i) error estimates and
convergence rates for the semi-discrete setting (time continuous) [22, 38| and/or (ii)
abstract convergence results with no convergence rates [22, 24, 29, 38]. Optimal error
estimates in the energy norms for the fully discrete schemes of CHNS-type systems
are lacking in the literature.

Kay et al. develop both a semi-discrete and a fully discrete mixed finite element
method for the Cahn-Hilliard-Navier-Stokes system of equations. For the semi-
discrete model, they were able to show unconditional stabilities resulting from the
discrete energy law. For the fully discrete model, they use a first order implicit-
explicit Euler method to discretize time and were able to show conditional energy
stability, with a restriction on the time step. They were able to obtain optimal error
(convergence) rates for the semi-discrete model, but only an abstract convergence
for the fully discrete model. In [29], Griin proves the abstract convergence of
a fully discrete finite element scheme for a diffuse interface model for two-phase
flow of incompressible, viscous fluids with different mass densities. No convergence
rates were presented in his paper. Feng [21] presented a fully discrete mixed finite
element method for the Cahn-Hilliard-Navier-Stokes system of equations. The time
discretization used is a first order implicit Euler with the exception of a stabilization

term which is treated explicitly. Conditional stability for the basic energy law is
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developed along with abstract convergence of the finite element model to the PDE
model. However, no additional stability estimates are presented beyond the estimates
achieved from the energy law. Additionally, Feng et al. [22] develop both a semi-
discrete and fully discrete finite element method model for the Non-steady-Stokes-
Allen-Cahn system of equations. For both the semi-discrete and fully discrete models,
conditional energy stability is developed. Optimal error estimates are obtained for
the semi-discrete scheme (time-continuous) while abstract convergence is proven for
the fully discrete model.

In the case that u = 0 — which occurs if v = 0 — the model (1.4a)-(1.4f)
reduces to the modified Cahn-Hillard equation [11, 10] which was analyzed by
Aristotelous et al. [3]. Their scheme was comprised of a convex splitting method
for time discretization and a discontinuous galerkin finite element method for
space discretization. They showed that their mixed, fully discrete scheme was
unconditionally energy stable, unconditionally uniquely solvable, and optimally
convergent in the energy norm in two-dimensions. Finally, Collins et al. [12] used
a convex splitting method in time and a finite difference method in space to devise
an energy stable method for a system similar to (1.2a)—(1.2¢), though they did not
prove convergence or error estimates.

The work presented in Chapter 3 on the modified Cahn-Hilliard-Darcy-Stokes
system is unique in the following sense. We are able to prove unconditional unique
solvability, unconditional energy stability, and optimal error estimates for a fully
discrete finite element scheme in three dimensions. Specifically, the stability and
solvability statements we prove are completely unconditional with respect to the time
and space step sizes. The phase field parameter ¢, is bounded unconditionally (with
respect to the time and space step sizes, 7 and h) in L>(0,T'; L*>°(2)) and the chemical
potential s, is bounded unconditionally in L>(0,T; L*(2)). With these stabilities in
hand we are able to prove optimal error estimates for ¢, and uy in the appropriate

energy norms.
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3.3 A Mixed Finite Element Convex Splitting

Scheme

3.3.1 Definition of the Scheme

Considering the finite element spaces defined in Chapter 2, our mixed convex splitting
scheme is defined as follows: for any 1 < m < M, given gb?‘l € Sy, u;l”_l € Xy, find

mon e Sy, £ pit € Sy, and u € X, such that

(000", v) +eca(uy, )+b(¢m Ly ,y) = VYvesS, (3.7a)
! (<¢ZZ)3 - ¢21_17¢) + 6@(@257}7,770) - (Mh ) ) (gh 777Z)> = Vl/) € Sha (37b)
a (&, ¢) =0 (o) — 69, C) = VCeS, (3.7

(0rup', v) + Aa(up', v) +n (up', v) —c(v, )
—b (ot v, ) =0 VveX, (3.7d)
c(uf',q) =0 VqebS, (3.7

where

m ¢ZL _ ¢;Ln_1 0 0

T

Remark 3.3.1. To shorten the presentation, we have set w = 1 (appearing in (1.4d)).
With some slight modifications here and there, the singular limit case, w = 0, can
be covered in the analysis that follows. In this setting, one loses the stability u;, €
L>°(0,T; L*(R2)), but this is not crucial for us. For perspective, the analysis of Feng et
al. [22] requires u, € L>=(0,T; L*(2)).

Remark 3.3.2. Note that (¢2 —g_bo, 1) = 0, where 50 15 the initial mass average,
which in the typical case, satisfies |¢y| < 1. We also point out that, appealing to
(3.7a) and (3.7e), we have (gbzn —g_bo,l) =0, forallm = 1,..., M, which follows
because a(p,1) = 0, for all p € Sy, and b(pp,u,1) = 0, for all ¢ € Sy, and all

u € V.
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Remark 3.3.3. The elliptic projections are used in the initialization for simplicity in
the forthcoming analysis. We can use other (simpler) projections in the initialization

step, as long as they have good approximation properties.

Remark 3.3.4. Note that it is not necessary for solvability and some basic energy
stabilities that the p—space and the ¢—space be equal. However, the proofs of the
higher-order stability estimates, in particular those in Lemma 3.3.14, do require
the equivalence of these spaces. Mass conservation of the scheme requires some
compatibility of the p—space with that of the ¢—space, to obtain b(¢pp,u,1) = 0. For
the flow problem, we have chosen the inf-sup-stable Taylor-Hood element. One can
also use the simpler MINI element. Recall that the stability of the Taylor-Hood
element typically requires that the family of meshes T, has the property that no

tetrahedron/triangle in the mesh has more than one face/edge on the boundary [5].

In order to prove unique solvability, we define a scheme that is equivalent to (3.7a)
- (3.7e) above. For any 1 <m < M, given ¢} ' € Sy, u)' ' € Xy, find ", i € Sy,

&l e Sh, uzn’o,uzl’l € Xy, p?’o,p?’l € S, such that
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and

m m—1
(wh e ) tealuv) +b (g ) =0 Vv EeS,  (3.100)
T

e (e +0)" — e =80, v) +ea et v)
— (i) + (& Y) =0 VU ES,  (3.10b)
A& —0 (=0 V(eSS  (3100)

At v) 4 (1) (o) = e (vl
—b (e vopup) =0 Vv eXy, (3.10d)

c (u;';’l, q) =0 Vq € Sh, (3.10e)

where

cpi*_l = 4,0;”_1 — 79y (Vng‘_l . u;n’o) € Sy, (3.11)
and Qy, : L*(Q) — Sy is the L? projection, i.e., (Qv — v, x) = 0, for all x € S. For
the initial data, we set

@) = Rpdo — ¢y, W) := Ppuy. (3.12)

Hence, (¢9,1) = 0. By setting v = 1 in (3.7a) and (3.10a) and observing that
a(p,1) = 0 for all ¢ € Sy, one finds that, provided solutions for the two schemes

exist, they are related via
9021 +$0 = (ﬁzn, QOZL S gh, uhm = uhm’o—l—uzn’l € Xy, pzn = p;ln,(] +phm’1 € §h (313)

for all 1 <m < M. The variables " and ;" are the same as before. Note that the
average mass of uf" will change with the time step m, i.e., (u*,1) # (M;Z”_l, 1), in

general.
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Remark 3.3.5. The utility of this new, equivalent formulation s that we can
straightforwardly show its unconditional unique solvability by convex optimization
methods. Qur arguments require that the velocity u;”’l is a linear function of )",
as is the case in (3.10d). (See Lemma 3.5.6.) This was not the case in (3.7d), where

uy' s an affine function of u'.

3.3.2 Unconditional Solvability

In this subsection, we show that our schemes are unconditionally uniquely solvable.

We begin by building some machinery.

Lemma 3.3.6. Given gp}?’l € S’h define the bilinear form ()" S'h X éh — R via

0 (p,v) =ea(p,v)+b(ep " u,v), (3.14)
where, for each fixed j € Sp, u = u(p) € Xy, and p = p(p) € Sy solve

1
Aa(u,v) + <77 + —) (u,v) —c(v,p) = vb(e) " v,u) =0 VveX, (3.15a)
T
c(u,q) =0 VYqgeS, (3.15b)
Then 0} (-, -) is a coercive, symmetric bilinear form, and therefore, an inner product
on ;So’h.

Proof. The solvability and stability of the flow problem follows from the fact that
<Xh, Sh> form a stable pair for the Darcy-Stokes problem. Now, let u; € S’h, 1=1,2.
Set u; = u(y;) € X, and p; = p(p;) € Sp, i = 1,2, with u and p defined in (3.15a)
and (3.15b) above. Then with «, 8 € {1,2},

1 _
Aa(u,,ug) + (77 + ;) (Ua,ug) — c(ug,pa) — b (P " ug, pa) =0,  (3.16a)

c(ug, pa) =0, (3.16b)
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and setting a = 2, § = 1 in the last two equations, we have

O (pny o) = £ a(pin, po) + 0 (2" g, o)
1

n+z
S (ug,uy). (3.17)

A
=ca(p,p2) + ;a(umll) +

It is now clear that £7( -, -) is a coercive, symmetric bilinear form on Sj. O

Owing to the last result, we can define an invertible linear operator Ly, ,, : S’h — S”h

via the following problem: given ( € Sy, find e Sy, such that
0, v) =—(Cv)  Vve S, (3.18)

This clearly has a unique solution because ¢}*(-, -) is an inner product on Sh. We
write Ly, (1) = —(, or, equivalently, p = —E,;}n((’).

We now wish to define another discrete negative norm.

Lemma 3.3.7. Let ¢, § € Sy, and SUpPose fic, fe € S, are the unique weak solutions
to Lnm (e) = —C and Ly (pe) = —&. Define

(€8 g = O (s 1) = = (Goe) = = (1, ) - (3.19)

(-, )p-1 defines an inner product on Sy,. The induced norm is
h,m

IS = /(¢ Qg s VC €S (3.20)
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Proof. Let ¢,v,€ € S, with a, 8 € R. By definition (3.19)

(QC + B@D:g)ﬁ}:}m - = (Oéc + ﬁ¢7#’§) =~ (C7M§) - 6 (¢7M§)
= (C:éa)L;}m + /B (¢7£)£};1m )
(GO =G (nes ) = G (pes 1) = (€ Qg

(CQ e =07 (i) > 0
with equality if and only if y1c = 0 since £}*( -, - ) defines an inner product on Sh. By
definition, p¢ = 0 if and only if ¢ = 0. O]

Using our discrete negative norm we can define a variational problem closely

related to our fully discrete scheme.

Lemma 3.3.8. Let ¢ ' € Sy, be given. Take @Zf*_l as in (3.11). For all o), € Sy,

define the nonlinear functional

2

7|l en—opt 1 PR
h, - 2
Gn(pn) = S|l . +4—€||90h+¢>0HL4+§HV90hHL2
Ly
1 m—1 - 0 2
Tz (SOh + bo, @h) + 5 ||<Ph||—1,h' (3.21)

G, 1s strictly convex and coercive on the linear subspace Sy,. Consequently, Gy has a
unique minimizer, call it @' € Sy. Moreover, ' € Sy, is the unique minimizer of

G}, if and only if it is the unique solution to

5_1 <(§021 +$0)37¢> tea (902171#) - (/Lhm,*al/}) + (5}?71#) - 6_1 (9021_1 +507¢) (322)
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for all ¢ € Sy, where Wi &' € Sy, are the unique solutions to

T

m __ . ,m—1
o (i v) = — (M, ,,) Vi e S, (3.23)

a(§r. Q) =10 (o, ¢) V(€S (3.24)

Proof. We begin by showing G}, is strictly convex. To do so, we consider the second

derivative of G, (i + s10) with respect to s and set s = 0. Hence,

Gr(on + s1) =—||90h+8¢ @?*1}}5_1 + HSDh+81/)+¢oHL4 ||V(S0h+3¢)||i2

1, . =
= < (@ G0 on +50) + 3 * llon + 561,

Taking the derivative with respect to s, we have

G (pn + s1b) = ! (<ph+s¢ o ,¢)£;%+§(¢ (goh+s¢+$0),(<ph+s¢+50)2)

1 —
& (Vipn +50), Vo) = < (0 + 00, ) + 0 (pn + 59,0)_y,,
(3.25)

Taking the second derivative with respect to s, we have
17 . 1 2 3 —\2 2 2 2
Gilon+59) = = I0lz + = ((ont 59 +30)° 92) +< IVEIZ + 01912,
Setting s = 0,
1 3 —\2
Giln) = = 6122 += ((on+0)" ¥2) +IVOl3e + [0, , > 0

for all ¢y € S'h. To show (G}, is coercive, we need to show that there exists constants

a > 0,8 > 0 such that Gy(pn) > allenll; — 5 for all ¢y € Sy,. Using the Cauchy
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Schwartz inequality, Young’s inequality, and Poincare’s inequality;,

P —
Gr(en) = Co(e) [ Veonll72 — Ci(e) |lop ™" + ol 2 — Cale) llenll72

where Cy(e) depends on the Poincare constant and Cy(e) is chosen to be less than

Co(g). Therefore,

Ghlpn) > a||Vnl7. — 8,

where o = Co(e) — Co(e) and B = Ci(e) || + 50“; do not depend on ¢;,. Hence,

Gy, has a unique minimizer, ¢} € S, which solves

/ m 1 m m— 1 m =
Grlei) = — (@i = b3 9) o + 2 (e +0)"v)

1 —
=< (0 00, W) +0 (2 ¥) 1 =0,

+e (Vi Vi)

for all ¢ € S, where we have set s = 0 in (3.25). By Lemma 3.3.7 and (3.10¢), we

have p}" € gh is the unique minimizer of GG, if and only if it is the unique solution to

et ((90’;?3 + %), w) +ealep, ) — (up,v) + (&7 0) = (e + g 10) (3.26)

for all ¥ € S‘h, where ', §' € S‘h are the unique solutions to

m _ , m—1 .
o (i, v) = — (M,y) Vve s,

T

a (&) =0 (10 VCES

]

Finally, we are in the position to prove the unconditional unique solvability of our

scheme.
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Theorem 3.3.9. The scheme (3.7a) — (3.7e), or, equivalently, the scheme (3.10a)
— (3.10e), is uniquely solvable for any mesh parameters T and h and for any of the

model parameters.

Proof. Suppose (90’}?_1, 1) = 0. It is clear that a necessary condition for solvability of

(3.10a) — (3.10e) is that
(e, 1) = (1, 1) =0, (3.27)

as can be found by taking v = 1 in (3.10a). Now, let ¢}, uy, € S, x S), be a solution
of (3.22) — (3.24). (The other variables may be regarded as auxiliary.) Set

— 1 — — 1 —
My = 19 ((#h' + @0)° = (@i + o) 1) = 19 (' +0)°,1) — %’ (3.28)

and define pp' = 3, + . There is a one-to-one correspondence of the respective
solution sets: @}, up, € S, x S, is a solution to (3.22) — (3.24), if and only if
e ™ e S, x Sy is a solution to (3.10a) — (3.10¢), if and only if ¢, " € S, X S,

is a solution to (3.7a) — (3.7e), where
W= Ot Go MR = it g (3.29)

But (3.22) — (3.24) admits a unique solution, which proves that (3.7a) — (3.7¢) and
(3.10a) — (3.10e) are uniquely solvable. O
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3.3.3 Unconditional Energy Stability

We now show that the solutions to our scheme enjoy stability properties that are
similar to those of the PDE solutions, and moreover, these properties hold regardless

of the sizes of h and 7. To begin, we establish a few necessary identities.

Lemma 3.3.10. Let (¢}, ppt,upt) € Sp x Sp x Xy, be the unique solution of (3.7a)-
(3.7e), with the other variables regarded as auxiliary. Then the following identities

hold for any h, T > 0:

(5ot i) = 5 [0 g + 7 502 (3.30)

@ (67, 0-6) = 5 [6- IV 2 + 7 IV6.07 1% (331)

(00" = ot 6e0p) = g0 0 =1+ F[I0-Pl G32)
+ 2 6o it + 20,0715 |,

(61— G067 _yp =5 [0 68 —Gall* s F 7 I602,0] - (339)

Proof. To prove (3.30), we use the definition of §,u} and expand as follows,

1 1
m my __ m m—1 m m—1 m—1
(0;upt,uy) = Rl A + -—uy — 5

_ m m—1 m m—1
—Z(uh—uh up +up upy —upt)

1 2
=5 [0 12 + 7 [l 0172 ] -
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Identities (3.31) and (3.33) follow in a similar manner to (3.30). To prove (3.32), we

use the definition of d,¢}" and expand as follows,

1
((67)" = o™ 0e0i) = o= (@) (05 + &™) + () (0 — o' ™) o — ™)
1
T ( 21_17¢T - Zl_l)
1 1
= o= (6507 (057 = (65)") + 5= (6507 (e — 07)7)
1
— == (61132 = [l 1% — e — 61172
1
-1 (<¢m>2 (@) @) = (o) o) = (e )’
b (@2 (o1 = op)?)
(A [ A e eb?:*}li?)

~ = (e = w7, + oo = ey
o (07 (07 = 7)o (o — o)
= o= (Nome = eI = llom - o712
== (eIl 2116713 + 1)

[CaN

2o+ 1)
1 _
o llgie (o1 = o) |17

1 _
Z ‘QSZ%_ ZI 1HL2
5 || (o) =15, + ||5T<¢*;:>2H;

= llenorei e + ||6T¢m|iz} -

]

With these identities in hand, the unconditional energy stability follows as a direct

result of the convex decomposition represented in the scheme.
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Lemma 3.3.11. Let (¢}, uir,uyt) € Sp x Sp, x Xy, be the unique solution of (3.7a)—
(3.7e), with the other variables regarded as auziliary. Then the following energy law

holds for any h, T > 0:

l Y/ ¢
B (uf, ) + 7 S IVR 3 72 S a7+ 72 3 g
m=1 m=1 m=1
2 - € m\ |12 1 mi2 1 mi\2 112
T mz{ SI9 G+ 5 I8+ 1 3o
v L erseriz £ 2 etz + Diser,, } = E (up,¢3) ,
2e 2e 2 ’
(3.34)

foralll1 <0< M.

Proof. We first set v = pj* in (3.7a), ¢ = §;¢}" in (3.7b), ¢ = =T, (6-¢}") in (3.7¢c),
vV = %uﬁ” in (3.7d), ¢ = %p}f in (3.7¢), to obtain

m ,m m||2 m— m ,m
(6- 05" ') + € Vi ||L2+b( h lauhaﬂh) =0,

(3.35)
1
~ ((80)” = o™ 0:01) + e a (071, 0,077) — (13, 6:63) + (&7, 6-0) = 0,
(3.36)
—a (521, Th (5T¢ZL)> +0 (9251}? - 507 Th (6T¢;Ln)) = 07
(3.37)

1 m ..m A m||2 n m||2 1 m ,.m m— m ,m
; (6rup’,up') + ; Va2 + ; [upllz2 — ;C(uh ,pp) —b (¢h 1vuh aﬂh) =0,
(3.38)
1 m ,m
;C(uhvp ) = 0.

(3.39)

Combining (3.35) — (3.39), using the identities from Lemma 3.3.10, and applying the

operator T anzl to the combined equation, the result is obtained. O
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The discrete energy law immediately implies the following uniform (in A and 7)
a priori estimates for ¢}, p;*, and uj’. Note that, from this point, we will not track
the dependence of the estimates on the interface parameter £ > 0, though this may

be of importance, especially if € is made smaller.

Lemma 3.3.12. Let (¢}, ppt,upt) € Sp x Sp x Xy, be the unique solution of (3.7a)-
(3.7e). Suppose that E (ul, #)) < C, independent of h. Then the following estimates
hold for any h, 7 > 0:

IN

max i’z + Vil + @) = 15 + o7 = Gl ] (3.40)

C,
0<m<M

max (|7l + 707 + o7l ] < C, (3.41)
0<m<M

M

= [nwm; v + ||u;?||;] <C (342

m=1

M
3 [Hv e Y R o R e s |

m=1

e = P+ o= o o - o | <0 Gy

for some constant C' > 0 that is independent of h, 7, and T'.

We are able to prove the next set of a priori stability estimates without any

restrictions of A and 7.

Lemma 3.3.13. Let (¢}, upt,upt) € Sp x Sy x Xy, be the unique solution of (3.7a)-
(3.7e), with the other variables regarded as auziliary. Suppose that E (u?,¢%) < C
independent of h. The following estimates hold for any h, T > 0:

M - - 2 2 " 4(6d—d)
T | 16 R 1s + 167 121+ IR 72 + I + 05N | < C(T + 1),
m=1

(3.44)

for some constant C' > 0 that is independent of h, 7, and T'.
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Proof. Let Q) : L*(Q) — S), be the L? projection, i.e., (Qnv —wv,x) = 0, for all
X € Sp. Suppose v € HI(Q) Then, using (3.40) and Sobolev embeddings,

(0:0%',v) = (6-05", Qnv)
= — (Vi, VQur) — b (¢t up, Qur)
< e[Vl 2 IV Qv ll o + Vo o il o [1Qnv ] o
< CEVi e + upllgm] IV 12

< ClelVerlly + gl m] Vel

w W
N
S &

w
N
Qo

—~ —~ —~ —~ —~
> =~
Nej ~
~— N— SN— S~— N—

where we used the H' stability of the L? projection in the last step. Applying 7 322
gives (3.44.1) — which, in our notation, is the bound on the first term of the left side
of (3.44). The estimate (3.44.2) follows from the inequality [|v||_, , < [[¥| -1, which
holds for all v € Sy,

Setting ¢y, = Ap¢p* in (3.7b) and using the definition of A,¢})*, we get

e | Andi Iz == ca(of, And}y)
= — (i Angf) + 7 ((60)” = O Al + (&7, Ay
<a (i of) — a (6, 67)
Gl R e
<2 IV + 5 19672 + & g2,
+C @R = 67 =0 (68 — o, 7
<G IVHRIEs + CIVOT 2 + & A2

+ (6 = o[+ Clloh = ol -
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Hence,

e Al < IVuile + C IV eI + C [0 — oI+ C |l = Bl -

(3.50)
Now using (3.41), we have
oy — a2 < 2 (gl + lep— 2.
< C o5 +C
<, (3.51)

where we used the embedding H'(Q2) — L5(Q), for d = 2,3. Putting the last two

inequalities together, we have
e Andi e < IVup 7z + C. (3.52)

Applying 7 3°M_ | estimate (3.44.3) now follows from (3.42.1).
Now, take ) = u}* in (3.7b). Then, using (3.40) and (3.51), we have

N

leilze < e MR = oMl il e + € IV R o 1Va N e+ NER N g Nkl 2

< S - 6+ I + S IV + 5 19
+C || VER |2, + }1 i1l 2

< C+ % |12 + g IV iz + CIVERIZ

< O+ % |2 + g IVpi |7z + C llon = <_bOHZiLh

< Ot g IRl + S IVuRIE

Hence

i lze < €+ e IV I7 - (3.53)
Applying 7 Z%:p estimate (3.44.4) now follows from (3.42.1).
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To prove estimate (3.44.5), we use the discrete Gagliardo-Nirenberg inequality
(2.36). Applying 7 3™ and using H'(Q) < L%(Q), (3.41.3) and (3.44.3), estimate
(3.44.5) follows. O

Lemma 3.3.14. Let (¢}, ppt,upt) € Sp x Sp x Xy, be the unique solution of (3.7a)-
(3.7¢), with the other variables regarded as auziliary. Suppose that E (u), ¢9) , |19, <
C independent of h, where 1) is defined below in (3.56), d = 2,3. The following

estimates hold for any h, 7 > 0:

M
Y oo, < C(T +1), (3.54)
m=1
m||2 m |2 m 4(6%;[1)
[+ A + Pl | <@+, (35

for some constant C' > 0 that is independent of h, 7, and T.

Proof. We prove (3.54) and (3.55.1) together. To do so, we first define ) via

(ho ) = a (hv) + 7 ((60)" = ohow) +0 (Tu (0 = 30) . v) . (356)

for all ¢» € S, and
540 ;=0 € 5. (3.57)

Now, we subtract (3.7b) from itself at consecutive time steps to obtain

Tt 0) = Tea (6,07 v) +e (@) - (67 v)
—7e! ((57 Z%l,w) + 07 (Th (0,:07) , ), (3.58)
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for all ¢ € Sy, which is well-defined for all 1 < m < M. Taking ¢ = p}* in (3.58) and
v =—7,¢" in (3.7a) and adding the results yields

T G 1) 710,070 2 =7 (5,0 {607 + opop + (07 ui)
— e (G ) + 0 (Th (5,6, i — 1)
—7b (e up, 6,67
(65 + e + (o)
SR\l PR e [
+ 07 [V Th (G i) 2 [l = 7]
—7b (e up, 6.0")
<Cr @) + oo+ (o7’

T m||2 m|2 112
+ 1 6-0 ||L2 +CT [V, ||L2 +C7 ||5T¢h 1”_17;1

<re” [ || o 110705 2

L3|

2
s [ |

+CT [V Th (50172 + C7 || — |2,
= Th(op w6y
<07 (970 + 161 5o ) i 5 + 7 6017
+CT V3 + Cr (|01, + O 18- 1% 1
+ 0T VARl = 7b (o7 it 0,07
<Ol + 7 16-677172 + O |3y ™|,

+CT 1600117 1 — T (O up 667 (3.59)

where we have used H'(Q) < L%(Q), Young’s Inequality, and (3.41).

Now we bound the trilinear form b( -, -, - ). To do so, we note the discrete estimate
d 4—d
IVVallps < CUVwnllpe + 1Al ) [Vonll s Y € Sh, d=2,3. (3.60)

Using Holder’s inequality, (3.60), (3.40.1), and (3.40.2)
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b (e i, o) | < (Vo | o il 116-077 1.2
< 1132 IV e (907 o+ A 2)
< L1607 e+ C IV + O 9 s w2
(3.61)

Setting 1y, = Apd in (3.7b) and (3.56) and using the definition of Ay}, it follows
that
18R 172 < Clluillze +C, 0 <m < M, (3.62)

so that, for 1 <m < M,
|0 (ot ug, 6 0h) | < < H5T¢mHL2 + O Va7 + C Va3 . - (3.63)
Thus,

m ,m T mi|2 mi|2 m—1]|2 mi2
T (Orpty’s ') + 5 10:05 172 < C7llpy' Iz +CT H(57¢h 1H,1,h + COT[0: 05171 1

m m— 2 m
+OT ||V |17 [ e + CT VU7 (3.64)

Applying Zil:l, and using (3.42), (3.44), 6,¢% = 0, and the identity

T (Gopd 1) = (s — g™t ) = ||uh 172 + 5 Huh —ﬂ?‘lHir—ll e
(3.65)
we conclude
1 2 1 2 =
S = Sl + S URI < OO 1) -0 S [,
" (3.66)

Since the estimate is explicit with respect to {||,u2”||i2} and 7 M [|[Vup|?, < C, we

may appeal directly to the discrete Gronwall inequality in Lemma 2.2.26. Estimates
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(3.54) and (3.55.1) follow immediately. Estimate (3.55.2) follows from (3.55.1) and
(3.62). Estimate (3.55.3) follows from the discrete Gagliardo-Nirenbergy Inequality,
the embedding H'(Q2) — L%(Q), (3.41.3), and (3.55.2). O

Remark 3.3.15. The idea for controlling the time-lagged HAh#L”_l Hi? term in (3.61)
using the discrete Gronwall inequality was inspired by a similar technique from a recent
paper by G. Griin [29], which deals with a different PDE system (as well as a different

numerical method) from that examined here and is not concerned with error estimates.

3.4 Error Estimates for the Fully Discrete Convex
Splitting Scheme

For the error estimates that we pursue in this section, we shall assume that weak

solutions have the additional regularities

¢ € H*(0,T; L*(Q)) N L (0, T; WH(Q)) n H'(0, T HI(Q)),

§e L*(0,T; H(Q)),

pe L®(0,T; H(Q)) N L*(0, T; HT'(2)), (3.67)
ue H* (0, T;L%(Q)) N L= (0, T;LY(Q)) n H' (0, T; H*(Q)),

p € L*(0,T; HI(Q) N L§(Y)),

where ¢ > 1. Of course, some of these regularities are redundant because of

embeddings.
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Weak solutions (¢, i) to

the following variational problem:

(@gb,y)—l—ea(u,y)—{—bw,u,u):

(3.2a) - (3.2e) with the higher regularities (3.67) solve

Yve HY(Q), (3.68a
(

)
() —ca(o,¥) —e (6" — g, 9) — (§,4) =0 V¢ € H'(Q), (3.68D)
a(§0) =0 (¢, () =0 V(e H(Q), (3.68)
(O, v) + Aa(u,v) +n (u,v) —c(v,p) =vb(p,v,u) =0 Vv e H;Q), (3.68d)
c(u,q) =0 VYqgeLi(Q). (3.68¢)
We define the following: for any real number m € [0, M],
¢ — "t
tmi=mT, ¢":=0@(tn), 00" = —
= ¢" = Rpg™,  ENT =" = Ryp™, EFTi=u—Phu, £ =€ - Ryg,
oy =0, Rpg™ — 0,¢™, 09" = 6,9™ — 06",
o’ = 0,Ppu™ —o,u™, oy = 4,u" — Ju™
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Then, for all v,¢,( € S, v € Xy, and ¢ € gh,

(5. Bud™,v) 2 (Rup™, ) + b (6™ w" ) = (07" 05", ).

(3.692)

a (Rhgbma 77Z)) - (Rh:um> 770) + (Rh§m7 ¢) = (gg,m, 77/}) - (gg,m’ ¢) + é (<¢m)3 - ¢m7 w) )
(3.69b)

a (Rhfm’ C) —0 (Rh¢m - 507 C) =0 (gj),m’ C) )

(3.69¢)

(0-Ppu™,v) + Xa (Pyu™,v) +n (Pyu™,v) —c(v, Pp™)

=y b(¢", v, ") = (0" + 03", V),
(3.69d)

c¢(Ppu™, q) =0.

(3.69¢)

Restating the fully discrete convex splitting scheme (3.7a) — (3.7¢e), for all v,1, €

Sh,v € Xy, and g € f;'h, we have

(600, v) +eal(uy,v)+b(op~ " ul,v) =0, (3.70a)

ea(gp ) = (i ) + (&) + e (o) — et 0) = (3.70b)

a (&) — ( — ¢y, ¢) = (3.70¢)

(6rugy, v) + Aa (ugf', v) + 1 (w,v) = c(v,pit) =7 b (o5 v, i) =0, (3.70d)
c(ul,q) = (3.70¢)

Now, let us define the following notation

ET = Bud” — 01, €97 = ¢ — 61, 7 = Rup™ — uil,

Ei’m =Ry =& E i =Ppu™ —wyt, E) = Ppp™ — py.
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Subtracting (3.70a) - (3.70e) from (3.69a) - (3.69¢), we obtain the following system

of equations for all v, € Sy, v € X}, and ¢ € S‘h,

((57.825””7 1/) +ea(Em V)= <af7m +o5™, ]/) —b(o,u,v)+b ( 21—17 uy’, I/) ,
(3.71a)
ca (0 0) = (& 0) + (857 0) = (€0, 0) — (£, 0) +7 (6™ = 6, v)

— (¢ = (o))
(3.71b)

a (&) =0 (&m¢) = o (e0m.0).
(3.71c)
(0-8,"",v) + Aa (&, v) + 1 (677, v) —c(v, &) = (0™ + 03, v) + 70 (0, v, 1)

_f)/b ( 7}?717 v, M;?) )
(3.71d)

(&M, q) =0.
(3.71e)

Setting v = £ in (3.71a), ¥ = 6,EP™ in (3.71b), ¢ = T, (5TSf’m> in (3.71c),
vV = %8,;”” in (3.71d), and ¢ = %Sﬁ’m in (3.71e) and adding the resulting equations

produces the key to the error analysis:

ca (g og0m) +0 (607 5.60m) T % (5:E™, EX™) + e | VEL™ |,
# 2 IVE 3+ LIE G = (f™ o™ ) 4 (o2 4 b )
+ (grm segpm) = ((07) = (@) 0,80™) + = (60, 0:60™)
et (et gepm) - (e aepm) — 0 (s Ta (0.60™))

— b (G E) b (G g ER) (6, E ) — b (B EN ) . (3.72)

We now proceed to estimate the terms on the right hand side of (3.72).
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Lemma 3.4.1. Suppose that (¢™, ™, u™) is a weak solution to (3.68a) — (3.68e),
with the additional reqularities (3.67). Then, for any h, T > 0, there exists C > 0,
independent of h and T, such that

h2a+2 T

t t
<c /r@wﬂmﬂ%+ /IQM@ﬁM&
T t—1 3 t—7

2
st

L2

h2q+2

o™ + o5 ™72 < C

t t
[ 0@ leds+ [ loaalds (13
t—T t—T1

for allt € (1,T].

Proof. Using Taylor’s Theorem and properties of the Ritz projection,

2

sm||? 1 [
ot =2 [ octmuots) - ots)y as
L T t—1 L2
1 t 2
== / (RpOsd(s) — Os0(s)) ds
T t—T L2
1 t t
<5 / / 1%ds / (RLOsp(s) — Os(s))” ds dx
T QJt—r t—1
1 [t 5
[ IR0.0(9) - 0.0(5) - ds
t—7
h2q+2 t )
<™ [ 10006 s as. 1)
t—1
By Taylor’s theorem,
m 2 1 t 2
loe( =1 / Duab(5)(t — 5)ds
T t—1 L2
1 t t
<= [/ (t —s)? ds/ (858¢(3))2 ds] dx
T Q t—7 t—1
1 ! 2 ! 2
=5 [ a-srds [ jouolds
T Ji—r t—1
,7_3 t )
32/ 0559 (5)]| 72 ds. (3.75)
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Using the triangle inequality, the result for

2
o™ + o m” , follows. A similar proof
L

can be constructed for [|o™ + o5 ™||3.. O

Lemma 3.4.2. Suppose that (¢, u™,u™) is a weak solution to (3.68a) — (3.68e),
with the additional regularities (3.67). Then, for any h, T > 0,

IV (6™ = (¢m)%)]],2 < C|VES™ ||, (3.76)

where EY™ 1= ¢ — H.

Proof. For t € [0,T],

[V ((6™) = (@) ||, < 3[[(e7)*VEX™|| L +3 ([ V™ (6™ + o) €7
<317 [[VE™ | 2+ 3IVE o 16™ + &l o [|E9™ ) o
<3 (07 17 + CIVE™ 6 1™ + S5 1) [[VES™ 2
<Cfverr . (3.77)

where C' > 0 is independent of ¢ € [0,7] and where we have used the unconditional

a priori estimates in Lemmas 3.3.13 and 3.3.14 and the assumption that ¢ €

L (0, T; WHS(Q)). O

Lemma 3.4.3. Suppose that (¢™, u™,u™) is a weak solution to (3.68a) — (3.68e),
with the additional reqularities (3.67). Then, for any h, T > 0, and any o > 0 there
exists a constant C' = C(a) > 0, independent of h and T, such that

€ m m m m m um eum
“IVELTIT +ea (&7 6607 ) +0 (&7, 5. ET)  + (BEET)

_17

A u,m||2 n u,m|2 b,m 2 b,m 2
o IVER 5 + 5 67 < c|vee| , +c|ve-er

+ «

2
5T5,<f’mH_1 FCR, (378)
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for any t € (1,T], where R is the consistency term

h2q+2

R(t) =

t T t t
| 100 ds + 5 [ 10u0(s) fuds 47 [ [90605) 1 ds
t t—1

—T t—1

p2at? [t 2 T [ 2 2q+2 2
i [ s+ G [ e ds 267

—T t—1

m m m—1|2 m m m
+ h2q (‘:u ﬁqq-&-l + ’(b ’?—]q+1 + }(b 1‘Hq+l + ’5 ’?—]q-’—l + ’11 ‘i]q-&-l + ‘p |12L[q> .
(3.79)

Proof. Using Lemmas 3.4.1 and 2.2.22, the Cauchy-Schwarz inequality, the definition
above, and the fact that (af’m + o™, 1) = 0, we get the following estimates:

(o2 5 ogm gpm)| < |

ot o™ IvET
—1,h
<Ot o], IvEL™
2
d)ym ¢am i Hn,m 2
<C|lotm+ogm| |+ S IvERTI

h2q+2 t ) - t ,
<o ([ 0ot ds 5 [ oo )
=7 t—7

€ m
+ 15 IVER™ 2 (380)

and, similarly,

h2q+2

t t
o2 + a3 &2m) <€ (o [ s ds+ § [ ool ds)
t—1 t—1

n u,m||2
+ % 1€ 172 - (3.81)
Now, from the standard finite element approximation theory

IVES™ 2 = IV (Bap™ = ™) o < ChO ™| g -
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Applying Lemma 2.2.22 and the last estimate

and, similarly,

Now, it follows that

and, therefore,

(s scir)

(e o0 | < clvermi [oge|
BT e
m|2 o ,1m 2
< Ch2q |/JJ |Hq+1 + g 575}? ‘ “1n
m m a m ?
(g5m,6.68™)] < Cr e s + S 0.l
—1h
t
17V8,6™ 2, < / IV0,6(s)|1% ds
t—1
< Lirvs.em| 5.0
= 2 T T L2 TCH 1k
t 9 Is" 2
< or [ Ivaslds+ S ag]
t—T1 6 —Lh

95

(3.82)

(3.83)

(3.84)

(3.85)



Using Lemmas 2.2.22 and 3.4.2 , as well as £%™ = £9™ Elf’m and a standard

error estimate,

1 m m m m
2 |(@m2 = P st | < 9 (6 = @) s [lgi”]
m\3 my3Y ||2 @ bm ?
<O (@ — @) 2+ S o]
<clven+ 5 e,
< clvesmi+clver,+ 5 sl
< CH 1§ 00 + C||VELT i +5 5755’m“21h'
(3.86)
With similar steps as in the last estimate,
| agm)| s ofven s o,
< Op }(bmflﬁ{q_'_l +C va;fvm—l ; + % (STEZ“M’ 21 .
(3.87)
Using the estimate
2 2 2
7 (), < oo (o), = e Jo-ee][,
we obtain
o (sem T (0:50m)) | < 0l || T (5:0)]
< Cht ’¢m’HQ+1 675’?”1‘ —Lh
e
S T (3.88)

o6



Now we consider the trilinear terms. Adding and subtracting the appropriate

terms and using the triangle inequality gives

—b (¢m7 u”, gllj’m) +b (¢Zl_17 u?a g}l;,m) +0 (qu’ g;7m7 Nm) -0 (gb;tn_l? ‘C/'I;l’ma M?)

< [ (€2 g+ b (&0 ) | 4 b (o Rug™ u, €4

o (gt Emm ™) |+ [ (e, &) + o (g8 & )|

+ b (18- Rud™, E ™) + |0 (o1, ™, EE™) | (3.89)
With the assumption u € L (0, T; L*(2)) we have

[b (€00, &) | < [[VEX™{| o ™ s 1657 ] 4
< C|[VEL™|[3. + 5 IVER™ I3

< Ch2 ™ 3 + — [IVEL™13, (3.90)

Sy
10
as well as

b (gpm e )| < ||vem | I g

schg,?’ N+ vt (3.91)

Using the stability of the elliptic projection, and reusing estimate (3.84), and u €
L (0,T;L4())

b (76 B ™, E4)] < V76 | o 0| 164
< C Vo R 12 [V EL
< O Vo, IVEL™
< ClrVas™ |7 + 15 IVER™ 3

t
<Cr [ IVOsIds+ S IVET I 392
t—T1
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Using (3.55.3) and the error for the Darcy-Stokes Projection,

b (et &xm &) < 190 o €™ s 1€
€ m
< CIEN" i + 15 IVE™ 72

€ m
< OP ([0 [fonn + P 5r) + 10 IVEr 172 (3.93)
Since we assume p € L™ (0,T; H'(Q)),

b (Exm & wm)| < Ve o 1™ pa ™|
< CVE™ | L IVE™ 2 1™

)\ u,m
<c|verm|t, + 5 V&L

A wm
< Ch¥ | ™2 000 + 5 IVE™ 2, (3.94)
and
HCHEANO IR i M Y
<c|verm| Iver i e
2 )
$,m—1 u,m |2
< ouvgh ot IVE G (3.95)

Again, using p € L™ (0,T; H'(Q)), the stability of the elliptic projection, and reusing
estimate (3.84)

[0(70-Rng™, & ™) < (V76 Rg™ (| 2 1€ | pa ™ |l o
S CONTVorRpd™ |2 (IVE™ | 12
S ClTVorg™ (| 2 IVES™ I 2

t
>\ u,m
<Cr [ Voo ds+ ZIVET L. (.96
t—1
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Finally,

0 (o & M) < IV ] e 1R e €™ ] o
< CIVE L IVE™ |l 2
A u,m||2 m
< & V& + ClIver™ L
>\ u,m m
< G IVER s + OB s (3.97)
Combining the estimates (3.80) — (3.97) with the error equation (3.72) and using
the triangle inequality, the result follows. m

Lemma 3.4.4. Suppose that (¢™, p™,u™) is a weak solution to (3.68a) — (3.68e),
with the additional regularities (3.67). Then, for any h, T > 0, there exists a constant

C > 0, independent of h and T, such that

2 2
575;;*7““ L STEVEL + C Hvs,fvm—l”m +HTCEIVEM2, + CR,  (3.98)

for any t € (1,T], where Coy = C2C,, Cy is the HY () — L) Sobolev embedding
constant, Cy is a bound for Jnax HVgﬁhmHig, and R is the consistency term given in

(3.79).
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Proof. Setting v =T, (578,?””) in (3.71a), we have

5¢WH L= e (et T (0-80m) ) + (o0 + 00 T (0:60™))
b (o Ty (s80m)) + b (o g T (5.60™))
— e (g g )+ (oF 4 of ™ Th (560
b<5 o Ty (5:607) ) = b (& Th (860
iy (T(sTRhw, T, (5755’"”)) —b (cbZH, gxm T, (5752’ m))
)
ot 4o [T ()
Th (0.0
s,
Th (8:50™)
Th (0.£0™)

To (8:60™)

<e|IVE™ |

L2

+ [IVE™ [ o Il e

L4

+ va,f’m‘l

R

+ 17V Brg™ || 12 [[0™ ] s

LA

+ Vo] o 1€ 1

LA

+ |V 2 1€ ] o

L4

752 m| 2 1 2 m d,m 2
< 5 Va3 o8 \_M A"+ L,
Lo | vesm
h H—Lh +H HL2 H Lh
2 1
+ova¢vmf1 v [aei| +or 198 Rugm;
1 1
£ +0|r<€;’m||Lz £
—1.h —1,h
7022 u,m
Ivermizs + o lo-&
A H_M*?”Wﬁ" I3 + 52 IVE™ I

dp,m—1 2
+c|vepm|, + R,
L2
where we have used Lemmas 2.2.21 and 3.4.1. The result now follows.
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Lemma 3.4.5. Suppose that (¢™, ™, u™) is a weak solution to (3.68a) — (3.68e),
with the additional regularities (3.67). Then, for any h, T > 0, there ezists a constant

C > 0, independent of h and T, such that

IVEL™ 3+ 1E" I + 0 (£, 0:60) + (E7, 0607 + (-6, E™)

<cC Hvs,fva; + | vepm i +CR.

(3.99)

Proof. This follows upon combining the last two lemmas and choosing « in (3.78)

appropriately. O

Using the last lemma, we are ready to show the main convergence result for our

convex splitting scheme.

Theorem 3.4.6. Suppose (¢™, u™,u™) is a weak solution to (3.68a) — (3.68¢), with
the additional regularities (3.67). Then, provided 0 < T < g, for some 1y sufficiently
small,

oom||? s |2 o
max {HV&; HL2+H&L’ H_lh+ush7 HLQ}

1<m<M

M 2
b (Ve e + o | < e @
m=1 )

for some C(T') > 0 that is independent of T and h.

Proof. Setting t = t,, and using Lemma 3.4.5 and the arithmetic-geometric mean

inequality, we have

2
o [werm||, +o

2
m u,m||2
o RN g

wym 2 u,m/|2 b,m 2 p,m—1 2 m
HIVEL 5 + I8 5 < C |[veS HL2+CHv5h |+ CR™
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Let 1 < ¢ < M. Applying Tan:l and using 5,?’0 =0, 5,1;’0 =0,

2 2 2
(o2 .l u,l
v+ e, + e
V4 l l 9
m(|2 u,m |2 m m
+T§_:1[y|v5;; 2, + ||€) ||H1}§CT§_:1R +0172_1Hv5,? HL (3.101)

fo<7<7:= ﬁ < Cil, it follows from the last estimate that

ik o i sm||?
e, <o 25 e

2

, (3.102)

L2

<o i or Y Ve
m=1

where we have used the regularity assumptions to conclude 7 Z%zl R™ < C(12+h*).
Appealing to the discrete Gronwall inequality (2.42), it follows that, for any 1 < ¢ <
M,

va,?fH; < C(T)(#2 + h2). (3.103)

Considering estimates (3.101) and (3.103), we get the desired result. O

Remark 3.4.7. From here it is straightforward to establish an optimal error estimate
of the form

M
max [|[VE4™ L+ 1€2715:] + 7 3 [IVE™ |5, + V€] < C(T)(r* + h)

1<m<M
m=1

(3.104)

using EHM = £Hm + SZS ™ et cetera, the triangle inequality, and the standard spatial

approzimations. We omit the details for the sake of brevity.
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3.5 Numerical Experiments

In this section, we provide some numerical experiments to gauge the accuracy and
reliability of the fully discrete finite element method developed in the previous
sections. We use a square domain © = (0,1)> C R? and take 75, to be a regular
triangulation of €2 consisting of right isosceles triangles. To refine the mesh, we
assume that 7,, £ = 0,1,..., L, is an hierarchy of nested triangulations of {2 where
T, is obtained by subdividing the triangles of 7,_; into four congruent sub-triangles.
Note that h,—y = 2hy, £ = 1,...,L and that {7;} is a quasi-uniform family. For
the flow problem, we use the inf-sup-stable Taylor-Hood element where the P; finite
element space is used for the pressure and the [732]2 finite element space is used for
the velocity. (We use a family of meshes 7, such that no triangle in the mesh has
more than one edge on the boundary, as is usually required for the stability of the
Taylor-Hood element [5].) We use the P; finite element space for the phase field and
chemical potential. In short, we take ¢ = 1.

We solve the scheme (3.7a) — (3.7e) with the following parameters: A =1, n =1,
0 =0, and € = 6.25 x 1072. The initial data for the phase field are taken to be

0_7, {%(1.0 ~ cos(4.0m2) ) - (1.0 = cos(2.0my) ) — 1.0} , (3.105)

where Z;, : H?(Q) — S is the standard nodal interpolation operator. Recall that
our analysis does not specifically cover the use of the operator Z;, in the initialization
step. But, since the error introduced by its use is optimal, a slight modification of
the analysis show that this will lead to optimal rates of convergence overall. (See
Remark 3.3.3.) The initial data for the velocity are taken as u) = 0. Values of the
remaining parameters are given in the caption of Table 3.1. To solve the system of
equations above numerically, we are using the finite element libraries from the FEniCS
Project [47]. We solve the fully coupled system by a Picard-type iteration. Namely,

at a given time step we fix the velocity and pressure, then solve for ¢y, upn, and &,.
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With these updated, we then solve for the velocity and pressure. This is repeated
until convergence.

Note that source terms are not naturally present in the system of equations (1.4a)
— (1.4f). To get around the fact that we do not have possession of exact solutions, we
measure error by a different means. Specifically, we compute the rate at which the
Cauchy difference, o, := C,]l\;[ f— ,i\fc, converges to zero, where hy = 2h., 7y = 27, and
TfMy = 7.M. = T. Then, using a linear refinement path, i.e., 7 = Ch, and assuming

q =1, we have

M
I8¢l = |Gy’ = G

<o =@+ = <) = Otgry) = O(hy).
(3.106)

H

The results of the H' Cauchy error analysis are found in Table 3.1 and confirm
first-order convergence in this case. Additionally, we have proved that (at the
theoretical level) the energy is non-increasing at each time step. This is observed

in our computations and shown below in Figure 3.1.
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Table 3.1: H' Cauchy convergence test. The final time is 7' = 4.0 x 10~!, and the refinement path
is taken to be 7 = .001y/2h. The other parameters are ¢ = 6.25 x 1072; Q = (0,1)2. The Cauchy
difference is defined via ¢ := ¢n, — ép,, where the approximations are evaluated at time ¢ = T', and
analogously for §,,, and §,,. Since ¢ = 1, i.e., we use P; elements for these variables, the norm of the
Cauchy difference at T' is expected to be O(7¢) + O (hy) = O (hy).

. hy 106|171 rate 16,1 77 rate 16p]] 1 rate
V2/s V216 1.988 x 10° - 2.705 x 10° — 3.732 x 10°
V2/16 V2/32 9149 x 1071 1.09 1.309 x 10° 1.03 9.73x 107! 1.92
V2/30 V2/64 4483 x 1071 1.02 6.216 x 107t 1.05 9.417 x 1071 1.02
V2/6a V2/128 2231 x 1071 1.00 3.056 x 107! 1.02 4.688 x 10~* 1.00
Energy Dissipation
2.5
2.4
23 A
2.2
2.1 1
2 A =
1.9 T T T T T T T T T T T T T T T T T T T 1
*FFFFE T T T ISP I S S S

Figure 3.1: Energy dissipation for the first order numerical scheme for the Cahn-Hilliard-Darcy-

Stokes problem. All parameters are as listed in Table 3.1 and we have taken h =

V2
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Chapter 4

The Numerical Analysis of a

Second-Order Convex Splitting
Scheme for the Cahn-Hilliard

Equation

In Chapter 4, we develope and analyze a second order in time convex splitting
numerical scheme for the Cahn-Hilliard problem. We will begin by setting up a weak
formulation of the problem (1.2a) — (1.2¢) and presenting the recent developments on
second order schemes related to the Cahn-Hilliard equation. We then introduce our
new mixed methods numerical scheme and show that the scheme is unconditionally
stable and optimally convergent. We then back up these findings with the results

from a numerical experiment.
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4.1 A Weak Formulation of the Cahn-Hilliard
Equation

A weak formulation of (1.2a) — (1.2¢) may be written as follows: find (¢, u) such that

¢ L>(0,T; H(Q)) NL*(0,T; L>(2)), (4.1a)
oo € L*(0,T; H'()), (4.1b)
pe L*(0,T; H'()), (4.1c)

and there hold for almost all ¢ € (0,7)

(O, v) +ea(pu,v) =0 Vv e HY(Q), (4.2a)
(1, 0) —ea(g, ) = (8° — ¢, 9) =0 Vi e HY(Q), (4.2b)

with the “compatible” initial data
$(0) = ¢o € Hy(Q) :== {v € H*(Q) | v = 00on 0N} . (4.3)

We note that the system (4.2a) — (4.2b) may be recovered from the Cahn-Hilliard-
Darcy-Stokes system presented in Chapter 3 by setting 7,6 = 0. Hence, it shares
those properties described in Section 3.3. Specifically, the system (4.2a)—(4.2b) is
mass conservative and the homogeneous Neumann boundary conditions associated
with the phase variables ¢ and p are natural in the mixed weak formulation of the
problem. Likewise, weak solutions of (4.2a) — (4.2b) dissipate the energy (1.1) and
the energy law (3.34) simplifies in this setting: for any ¢ € [0, 77,

E(o(1)) + / IV u(s)[122 ds = E(6). (4.4)
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The restriction of the equations to the Cahn-Hilliard problem does not affect the
availability of the existence of weak solutions and the method by which this is proven

follows a compactness/energy method shown, for example, in [19].

4.2 The State-of-the-Art on Second-Order
Numerical Schemes for the Cahn-Hilliard
Equation

In general, the analysis of second-order numerical schemes for nonlinear equations can
be significantly more difficult than that for first-order methods [59]. As such, second
order schemes for Cahn-Hilliard type equations have been less commonly investigated.
Nevertheless, such work has been reported in the following articles [4, 8, 14, 15, 26, 55,
57, 65]. We mention, in particular, the secant-type algorithms described in [14, 26].
With the notation ¥(¢) := 1 (¢* — 1), the secant scheme of [14] for the Cahn-Hilliard
equation may be formulated as

I (A e (o

gbn—i—l _ ¢n

¢n+1_¢n:85Alun+%’ L (AQZSR—H—AQSR). (4.5)

DO ™

This scheme is energy stable. However, it may not be unconditionally uniquely
solvable with respect to the time step size, s. (See [14, 15, 26] for details.) Lack
of unconditional solvability may be problematic as coarsening studies using the Cahn
Hilliard equation may involve very large time scales, requiring potentially very large
time steps for efficiency.

Chen and Shen introduce a semi-implicit Fourier-spectral method in [8] which has
a couple of advantages over explicit Euler finite difference methods. In their scheme,
the high-order semi-implicit treatment in time enables the use of larger time steps
while maintaining higher accuracy. However, even though the time step size may

be taken to be larger, the scheme’s stability is still not completely independent on
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the time step size. Furthermore, although they test their scheme through numerical
simulations, no formal stability or convergence analyses are presented in the paper.

Wu, Zwieten, and Van Der Zee [65] introduce a semi-discrete second-order
convex splitting scheme for Cahn-Hilliard-type equations with applications to diffuse-
interface tumor-growth models. They are able to show unconditional energy stability
relative to the energy norms, mass conservation, and a second order local truncation
error for the phase field parameter. However, they do not prove second order accuracy
relative to the energy norm for the phase field parameter.

In [32], Guo et. al. propose a new second-order-accurate-in-time, finite difference
scheme for the Cahn-Hilliard equation in three dimensions. In their paper, they show
their scheme is uniquely solvable and unconditionally energy stable. Boosting the
basic energy stability estimates leads to a convergence analysis demonstrating that
convergence of their scheme is unconditional with respect to the time and space step

sizes. Following their work, we propose a fully discrete, mixed finite element scheme

for the Cahn-Hilliard problem (1.2a)—(1.2c):

1

prl_ g = ssAh,uZJr5, (4.6a)
n+3 1 n n n 2 n 1 3 n 1 n—
py, = (o + o) (( P+ (¢h)2> 2 <§¢h - §¢h 1)

3 1
— e/, (Z—quzﬂ + ZQSZ_l) : (4.6b)

where A, above is a finite difference stencil approximating the Laplacian, and ¢y,
and py are grid variables. In our finite element version of the scheme, the stability
and solvability statements we prove are completely unconditional with respect to the
time and space step sizes. We are able to achieve unconditional L*°(0,7"; L>=(Q2))
stability for the phase field variable ¢, and unconditional L>(0,T; L*(f2)) stability
for the chemical potential u, leading to optimal error estimates for ¢, and py in the

appropriate energy norms.
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4.3 A Mixed Finite Element Splitting Scheme

4.3.1 Definition of the Scheme

Our mixed second-order splitting scheme is defined as follows: for any 1 < m < M —1,

given ¢, g1 € Sy, find ¢, "2 € S, such that
(5T ;rz—i—%, V) +ea (/ULZH%, V) =0 Vv esSy, (4.7a)
- m m - Fmts
1<x<¢h+wh>,¢)—sl(¢h w)
+ea <¢th+§a¢> - ( m+2’,¢> vw S Sh7 (47b)
where
m+% (bZLJrl B (bzn m+% 1 m-+1 1 m o m+% 3 m 1 m—1
0r h = fv h = —¢h + §¢h7 On = §¢h - §¢h ) (4-8)
m-l—% 3 1

m+1+ qb : X(m—H ¢h)'__

5 (657 + (@p)?) 074, (49)

T4

Since this is a multi-step scheme, it requires a separate initialization process. For the

1
first step, the scheme is as follows: given ¢) € Sy, find ¢}, u? € Sy, such that

<5T¢%,V> +ca (u%, y> =0 Vv e Sy, (4.10a)

(@ 90) )~ (@) + G (hw)

Yea (gbh@/)) _ (uh@w) — 0  V¢eS, (4100

where @) := Rp,¢q, and 1) := Ry, such that

po =" (¢ — ¢o) — eAdy. (4.11)
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Remark 4.3.1. The notation for the backwards difference operator has changed
slightly from Chapter 3. The necessity of the notation change is understood through

the definitions of the two schemes.

Theorem 4.3.2. The scheme (4.7a) — (4.7b) coupled with the initial scheme (4.10b)
— (4.10b) is uniquely solvable for any mesh parameters h and T and for any model

parameters.

Proof. The proof is based on convexity arguments and follows in a similar manner as

that of Theorem 5 from reference [37]. We omit the details for brevity. O]

Remark 4.3.3. Note that it is not necessary for solvability and some basic energy
stabilities that the p—space and the ¢-space be equal. However, the proofs of the
higher-order stability estimates, in particular the proof in Lemma 4.3.10, do require

the equivalence of these spaces.

Remark 4.3.4. The elliptic projections are used in the initialization for simplicity
in the forthcoming error analysis. However, other (simpler) projections may be used

in the initialization step, as long as they have good approximation properties.

4.3.2 Unconditional Energy Stability

We now show that the solutions to our scheme enjoy stability properties that are
similar to those of the PDE solutions, and moreover, these properties hold regardless
of the sizes of h and 7. The first property, the unconditional energy stability, is a

direct result of the convex decomposition.

Lemma 4.3.5. Let (¢}, u?) € Sp x Sy, be the unique solution of the initialization
scheme (4.10a) — (4.10b). Then the following first-step energy stability holds for any
h, >0:

1 1 2
B(¢3) + 7= ||[Vui|| , + T lloh = bl < B () + - lAwi]lfe. (412)

2
L2
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where E(¢) is defined in (1.1).

1 1
Proof. Setting v = 7u? in (4.10a) and ¢ = 76,907 = ¢ — @) in (4.10b) yields the

following;:

r(50k ) +re |||, =0, @13)
(0 (04 68) 04— ) — = (b 0h — ) +=a (01,01 — o)
+Ta(ub,oh— o) =7 (ni0e0n) =0, (414)

Adding Equations (4.13) and (4.14), using Young’s inequality, and the following

identities
1
(x (64, 90) 61 — ) 1(||¢h||L4 l6hl1% ) (4.15)
1
(¢8: 0% — o8) =5 (1o 15 = 68115 — I3 — Rl ) - (4.16)
the result is obtained. O

We now define a modified energy

1 €
F(,v) = E(®) + 1o = ¢ll5. + £ IVo = Ve, (4.17)
where FE(¢) is defined as above and present a technical lemma for use in the

forthcoming stability analysis.

Lemma 4.3.6. Let (¢)"" ,LLZHF%) € S x Sy, be the unique solution of (4.7a) — (4.7b).
Then the following identities holds for any h, 7 > 0:

~ m+i m+1 1 m 2 m
(X (o7t opt) — o +2,5T¢h+2) = (H(¢h +1)2 1 L2_ 1(g7)* — 1H2L2)
1
- (Hw R P [l

qusm“ 267 + ¢ |7, (4.18)
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- mal mal 1
a (6 6.0 =2—(HV¢W+1}|L2 IV
+ 5= (Iverv = vor | — [V - ver[.)
o IVep — 2vep + Vo2 (4.19)

1

Proof. To prove (4.18), we use the definitions of (¢, ¢7*) and gghm+§ and expand

as follows,

(X (B o) — "6 ¢m*2)
1 1/3 1
== (@) + (@) (o) = (1)) = — (§¢z" SO e~ ¢;?;)
1 1
=1 ()" + @) (er)" = (05)°) = oo (O oo — o)
o (O =20+ o o — o)
1 1
- (H 7L, - o) - 5 (\\¢zn+1\\L2 I 12.)
+ g (I - ¢;"||L2 ~llei - ¢2”‘1||L2) et =20+ o

1 m
:4—[(\w
m—+1 m m m—1||2 1 m—+1 m m—1||2
+ (H¢ —¢>HL2 i = o1 ) + 5= Ml — 205 + 675,
1
-1 (H(wﬂ)z S R
o (o = ol - low — o 112)

1 m m m—
+ At H% 207 + ¢, 1Hi2 :

=2+ 1) = (IRl - 21+ 1)
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ol a1
To prove (4.19), we use the definitions of ¢, "2 and 0r0y, "2 and expand as follows,

v omtd m+1 1 /3 1

a (" 6007 = Za (—aﬁZ’“ + o e - ¢;:)
1 m+1 m m+1 1 m 1 m—1 _m+1 m

:T(aﬁ +¢+¢ = S0+ 0Tl <z>)
1
o= (19615 = 1967132

1
+ 4= (VOR™ = V) = (Voi = Vo), Vo™ — Ver)
1
2—(\\v¢m+l||L2 AT
+ & (me“ Vorls. - Ve - ver|)

+ g [Vt — 2V + Vo). .

]

We are now in position to show that our second-order (in time) mixed finite

element splitting scheme is unconditionally energy stable.

Lemma 4.3.7. Let (¢)"" ,uZHrQ) € S x Sy, be the unique solution of (4.7a) — (4.7b),

and (¢}, u?) € S, X Sh, the unique solution of (4.10a) — (4.10b). Then the following
energy law holds for any h, 7 > 0:

¢
F (¢t ¢p) +7¢ Z HVMZH
m=1

L+Z

+ 2 |[Voptt = 2vep + VeptL| = F (6h ).

“¢m+1 o 2¢m +¢m 1||L2

(4.20)

forall1 <0< M—1.
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Proof. Setting v = uZH% in (4.7a) and ¢ = 5T¢Zl+% in (4.7b) gives

2

1 m4+ L m+1
(et ™) oot =0
_ m m m+i - v omty mt3
c 1 <X (¢h+1’¢h) 75T¢h+2> — & ! (¢h 2757’ h+2)
(o) - () 0

Combining (4.21) — (4.22), using the identities from Lemma 4.3.6, and applying the

operator 7Y% _| to the combined equation, results in (4.20). O
For the remainder of the chapter, we will make the following stability assumptions
for the initial data:

E(60) + 72| A5 + || Aneh][5. < C. (4.23)

for some constant C' > 0 that is independent of h and 7. Here we assume that £ > 0
is fixed. In fact, from this point in the stability and error analyses, we will not track
the dependence of the estimates on the interface parameter ¢, though this may be of

importance, especially if € tends to zero.
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1
m+3

Lemma 4.3.8. Let (¢)"" p, " ?) € Sy, x Sy, be the unique solution of (4.7a) — (4.7b),
and (¢}, u?) € S, X Sh, the unique solution of (4.10a) — (4.10b). Then the following

estimates hold for any h, T > 0:

Jmax [IVori. + @7 - 1lL] <c. 424

Jmax [l + 15 + e l5e] < C (4.25)

s (o = on s+ [Vor - vep L] s ¢ @)
M-—1 1 9

TmZ:D HWh L6 @)

M-1

> [llort =20+ oL+ Vot —2ver + Vor ] s ¢ (@)

m=1
for some constant C' > 0 that is independent of h, 7, and T'.

Proof. Starting with the stability of the initial step, inequality (4.12), and considering
the stability of the initial data, inequality (4.23), we immediately have
2

< C. (4.29)
L2

2 1
[96Rll5. + [[(61)° = 1], + okl + lhllze + 04l + 7 ||V

The triangle inequality immediately implies
1
F (6h ) = B(@h) + - 16k — &8l1% + S | Voh - Vell[}. < €

This, together with (4.20) and the fact that F (¢ ¢7) > E(¢)"th), for all 0 < m <
M — 1, establishes all of the inequalities. O

We are able to prove the next set of a prior: stability estimates without any

restrictions on h and 7. See 2.2.21 for a definition of discrete negative norm [ - ||, ;.
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1
m+3

Lemma 4.3.9. Let (¢)"" 1, 2) € Sy, x Sy, be the unique solution of (4.7a) — (4.7b),
and (¢}, u?) € S, X Sh, the unique solution of (4.10a) — (4.10b). Then the following

estimates hold for any h, T > 0:

Tﬂgl 5t 21+ 5ot :h <, (4.30)
" M-1 m+1 9
TmZ:OH,uh 2 LQSC’(T—I—I), (4.31)
= ~ m+i 2 - mti =
> HAhgbh 2 L2+H¢h || 5 | e+, (4.32)
m=1

for some constant C' > 0 that is independent of h, 7, and T.

Proof. Let Q;, : L*(Q) — S, be the L? projection, i.e., (Qpv —v,&) = 0 for all € € Sj,.
Suppose v € HI(Q) Then, by (4.7a) and (4.10a), for all 0 <m < M — 1

(52 v) = (6017, Q)
= —¢ <VLLZH_%, Vth/>

1
<fmi

12 IV Q|2

m+L
< C’sHVuh+2

Vvl 2, (4.33)

L2|

where we used the H! stability of the L? projection in the last step. Applying 7 Z%;&
and using (4.27), we obtain (4.30.1) — which, in our notation, is the bound on the
first term of the left side of (4.30). The estimate (4.30.2) follows from the inequality
Il 15 < |lv[l -1, Which holds for all v € Sh.
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To prove (4.31), for 1 <m < M — 1 we set ¢ = ,um+2 i

1 m m m+ _ ~ ma+i m+1 - m+l m+l
o < (ot o) )‘5 1( by 2>+5@<¢h 5y, 2)

2
m—s—%

(4.7b) to obtain

1 m—+=
I

<Cx (e o) e+ 5 on

2
+c’
L2

112

m—i—2
T3 Hm

i .

+ CHV@LMQ

2’

1
And, similarly, setting ¢» = 7 in (4.10b), we have

1) 1 3|
<Ol (@b I + & +ever],

1 1 2
5 v+

1
cllel. + &t

2
B +cT2 Al

12
2
253 12

1 1
6 |

Hence, using the triangle inequality, (4.25), and the initial stability (4.23), we have
forall0 <m < M —1,

+C.

el
2

2
L <ol e+ L vu

L2

Now, using Lemma 4.3.8, we have the following bound for all 0 <m < M — 1

2
e (G o) 12 =6 [[607)° + () o+ o o + o1’

<cfjerny [, + e,

+C [l @2 s + C )
<O ||lgrY|S + CllerlSe < C [Jort |5 + Cllé 15
<C, (4.34)

where we used Young’s inequality and the embedding H'(Q2) < L5(Q), for d = 2, 3.

Hence,
2

e (4.35)

m+§
Hﬂh

<[
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Applying 7 Z%:_Ol , estimate (4.31) now follows from (4.27).

1

Setting 1, = A;@}LWr2 in (4.7b) and using the definition of the discrete Laplacian
2.2.16, it follows that for all 1 <m < M —1

2

Y il
= —5a(¢h JENY +2>
m-+2 - m+i _ ~ m+i > m %
= — (Mh+27Ah¢h +2> —e! (¢h VN A )
-1 m—+1 m A ¢ m+%
+e X(¢h 7¢h)7 hPh
=a <#Zn+§> th+§> —e! (Qghm+27AhQ§hm+2)

s (x (ot on) A

- gl
€ “Ah¢h 2

L2

1 m+11? 1 - mt1? ~mts 2
< ||vun |+ 5 || v :
=5 H K 12 + 5 O ®n

L2

+c|
L2

2 R
+ 1 HAh% 2
12

< L2
O (G o) e + 5 || Andn™

2’

Using the triangle inequality, (4.25), and (4.34), we have

A < vt v e 4.36
€ hOh 12 = My, L2+ . ( )

Applying 7 Z%:—ll, estimate (4.32.1) now follows from (4.27).
To prove estimate (4.32.2), we use the discrete Gagliardo-Nirenberg inequality

2.2.24 to obtain,

2

yhm+§ < C HAh(b*heri th+§ d LC Hqgher§ d ’ for d — 2’ 3
L= L2 Ls Ls
(4.37)
Applying 7 3 M1 and using H'(Q) < L5(Q), (4.25), and (4.32.1), estimate (4.32.2)
follows. 0
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Lemma 4.3.10. Let (gb?“,u?ﬂ) € Sy x Sy be the unique solution of (4.7a) -
(4.7b), and (¢}, u?) € Sp x Sy, the unique solution of (4.10a) — (4.10b). Assume that
H,LL?lHig < C, independent of h. Then the following estimates hold for any h, T > 0:

M= 2
i ’ < C(T+1), (4.38)
L2
112
m+3 <
o0 | ’ L ST+, (4.39)

for some constant C' > 0 that is independent of h, 7, and T.

Proof. The proof is divided into three parts.

Part 1: We first establish

(4.40)

112
e

i +

1 1
To this end, setting v = 76,¢; in (4.10a) and ¢ = 2u} in (4.10b) and adding the

resulting equations, we have

112
Bal,, 7

2
L2

zg (X (61> Ph) “é> - g ( 2’“’%)
. (Ahug’ué) — 2 <Ah¢2>ﬂi%>
7+ ol @b )2+ ol

+ CT2 HAthHLQ + C “Ah¢h

e

Thus,

1112
sof| < c

1
. (4.41)

considering the initial stability (4.23), (4.25), and (4.34).
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Part 2: Next we prove that

2

+7 < C. (4.42)

2
L2

S 9j,

3
2
Ky,

Setting m = 1 in (4.7b) and subtracting (4.10b), we obtain

L2

(i — ko 0) =ea (dF = 6.0) = 2= (6} - 0v) — Za (s 0)
+e7 (X (D 8) — X (En: 1) - ¥) (4.43)
3 31 1 3
—ca(Grbi + 57860 0) - o 0 - o) — Ja (ahv)
+&7t (O (G n) = x (0, 01) 1 ¢) (4.44)

Additionally, we take a weighted average of (4.7a) with m = 1 and (4.10a) with the

3

weights 4 and }1, respectively, to obtain,

3.8 1. 1 3 3 11
10000 + 30t v ) = —ea| g+ qpv ), Vv ES (4.45)
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3 1 3 1
Taking ¢ = %,ufl + }uufb in (4.44), v = ?’f&qﬁﬁ +30-¢p, in (4.45), and adding the results
yields

g4 38 LN 30 e 10 ]
i = i gHs + gHg | T 7170005 + 0-0;

L2

3 3 1 T 3 1
= — o= (0 —oh i + i) — (1 30k + 017

1 3 1
o (x (63 0h) = x (k68 3ui + 15,

= - % (6= 6830 + i) + = (A 307 + i)
o (X @ o) —x 0k 80) 3 + 1)
<t + o], +clez + cliai.
L2 L2
+ O | Anit[2 + Cllx (9. 80 17 + C [Ix (0, &) I
=53 1 el | e

where we have used Young’s inequality, (4.23), (4.25), and (4.34). Considering Part

1 and the inequalities

35 ot Loobl| =2 [aobl + 2 (5.08.0.00) + = ook |
T P TR sl | B N VA TN | I |5
9 3112 3 3 1 1 12
> = |8, ¢02 — = |6, 02 9,02 — 119,02
~ 16 % 2 8 % L2 % PRET: O L2
3 a7 _ 1 1P
zg 5T¢h L2_§ 5T¢h LQ’
and
3 133 11 3 212 1,38 1 1 12
2 2 2 ) _ 2 = 2 2\ _ = 2
(#h Nh74luh‘|’4,uh) —4Hﬂh 12 2<Mh7#h> 4Hﬂh 12
1y 22 1y 12
_ 2 . 2
ZQHM" 12 QHMh 12
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we have,

L 3T 3| ° o< 4.46
Z"uh et T¢h "uh L2 TS (4.46)
Part 3: Finally, we will establish
eyl m3 T <ot 447
(A e o), (447)

For 2 < m < M —1, we subtract (4.7b) from itself at consecutive time steps to obtain

(MZHQ - H;n_%7¢> =ca <¢v s — o >¢> —e ! (¢~hm+% — Qghm_;ﬂﬁ)
+e (X (Oh T on) — x (endn ) )
—ca (37'(5T¢m+2 + ZT(STqﬁ?:_g,w)
m—1 1 m—3
— ! (57'57% ? - 57'57% 2#?)

1
_|_4_€(w}7ln( m+1 ¢m 1)’w)

(4.48)

for all ¢ € Sy, where w}" :=w ( L gm g 1) and
w(a,b,c) = a*+b*+ 4+ ab+ be + ac.

Additionally, we take a weighted average of the m + % and m — % time steps with the

weights 2 and 1, respectively, of (4.7a) to obtain,

(Zé‘r(bh—i—Q -+ Z(qubh 2,1/) = —£ca <Z/1,h+2 + - 2,1/> s (449)
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for all v € S, which is well-defined for all 2 < m < M —1. Taking vy = 4,uh g —|—4Mh
n (4.48),v=r ( 0r0, s + 157% > in (4.49), and adding the results yields

2

m+2 m—2 3 m+1 1 m— m+2 1 m—3
(Mh = 271/% 2+ZM ) 5¢ 2+_5T¢h ’

L2

- h - T¢h 4 h 4 h

m (m m— 3 m+ 1 m-3

4 ¢h +1 ¢ 1) + leuh 2
1 § 3 m+ 1

- 2 T(bh 2 + /jlh

4
m+2 3 m+1 1 m—g)

+
+ 741% + 4Nh :

(G
(€
(G
(w5
(

m m—1 3 m+l 1 -3
wh57¢h 271,[% 2"'1!% 2)

33

*‘;|\1 ml\l *’>|

+

€
1
€
€
-
€

e

A
|%°

1 3
h

T(bh

5T¢Z‘

L2

7’ m+i -3
- 3 2 _|_ 2
85 H Hn 2

+ Lo
+ o 16 el
+

3

5 qu“ Hau’”ﬂ T

3

H3um+2 +

T¢h

T e

2

m—l—%
Rt

m+1 m-1 3 ma1
(:uh Q_Mh 271” T¢h 2+ 6T¢h

1 -2
Zuh 2)

L2
1112

3_2 5T¢h

m+

L2 L2

2 112
m+§
2 +C7 H/I/;

+

Tth

Hl
2

)

+Cr H,uh ~3 .
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where we use the H*(Q2) < L%(Q2) embedding to achieve following bound,

ookl = || (850 + (017 + (917)" + 62 + i+ ™" + g

<C o2 + Cllep e +C llop s < C.

L3

Applying 22:2 and using the following properties

m+f m—2 3 m+f 1 m—3 1 m+f m—2 m+2 m—=
(,Uh — ) +4Nh 2) 2(/% —Hp Pty Py, 2)

1/ myl m—L il 1 m—3
"‘Z(Nh Tty P20y, 7y, 2>
= +3? _1” -7
2 H 2 2 Hn L2
m+1 m—1|2 1 _1 _32
SH'M B L2_§HMh ST L2
m+1 1 3112
8”“ B S
and
m 1 m—s 9 m+ 2 +
S I AL B 2 (5 2 5 )
H ¢ +4 gbh L2 L? ¢h gbh + 2
9 m+% 3 m+% m—3
=36 107 |2 T 5 (1070 oon 7L,
m—3 2
2
+ 0-0y, ,
3 m+3 1 m—z 2
25 109n 7| 5100 T
we conclude
¢
Ly e+22 T m+1 Ly 2 112 37 3
e
oT 12
+ 35 |[0-9% +CTZ’ L SC(T+,
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for any 2 < ¢ < M — 1, where we have used Parts 1 and 2 and estimates (4.27) and

(4.31). The proof is completed by combining all three parts. ]

Lemma 4.3.11. Let (¢ ,MZH%) € Spx Sy, be the unique solution of (4.7a) — (4.7b),
and (¢}, u?) € S, X Sh, the unique solution of (4.10a) — (4.10b). Then the following

estimates hold for any h, T > 0:

<C, (4.50)

2 1012
+\¢2
hL
4(6

—d)
, T Hﬁbh

max [ HAhgbh *3

1<m<M-1

} <O(T+1), (4.51)

for some constant C' > 0 that is independent of h, 7, and T.

1
Proof. To prove (4.50.1), set ¢» = Ay¢7 in (4.10b) and use the definition of the
discrete Laplacian 2.2.16 to obtain

112
e ||Apd? =
H h¢h L2

ACHNS
(x (0h o) — 08 A ) = (i B ) + Za (uz,m%)

9 2 ) 0112
<5 e il A

2
. +C<||X o o) 1% + |8

8
<3 HAM

The result now follows. Estimate (4.50.2) follows from (4.37), the embedding
HY(Q) < L%(Q), (4.25), and (4.50.1).
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Setting ¢ = Ahgghm+§ in (4.7b) and using the definition of the discrete Laplacian
2.2.16, we get

2

v er

= —¢fa (¢V 3 Ahqgher )
= = <N?+%7Ah(5hm+%> —e! (éf;h : DA™ )

st (x (ot on) A ™)

L2

1112

2 +C
L?

1
~ m+2

<l

S > m+
+ 5 HAh¢h

L2
+Cx (@ o) |15
12

m+1 2 £ ~m
<C+ 0w+ g A

<

< main?
where we have used the triangle inequality and (4.34). Hence, HAhgbh T2

L2

c+C Hu , for 1 < m < M — 1, and estimate (4.51.1) follows from (4.39).
Estimate (4.51.2) follows from (4.37), the embedding H*(Q2) — L%(Q), (4.25), and
(4.51.1). 0

Lemma 4.3.12. Let (¢)" ,um+2) € Sp xSy, be the unique solution of (4.7a) — (4.7b),
and (gbh,uh) € Sy x Sp, the unique solution of (4.10a) — (4.10b). The following

estimates hold for any h, T > 0:

4(6—d

4(6—d)
max | [|Angp (|72 + |0 HL°° <C(T+1), (4.52)

0<m<M
for some constant C' > 0 that is independent of h, 7, and T'.

Proof. We begin by proving the stability for the first time step. A simple application
of the triangle inequality gives (4.52.1) for m = 1 as follows,

HAhéb;llHLg = HA}L@ll + Apoy — Ah¢2||Lz < HAh(bllz + Ah¢2HL2 + ||Ah<l52||Lz
<2, + I8t <
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where we have used the stability of the initial data, inequality (4.23), and (4.50.1).
Next, using (4.37), H'(Q) — L%(Q), (4.25), and (4.52.1), we arrive at (4.52.2) for
m = 1. For 2 <m < M — 1, by definition,

2

N

2 3 |
o= (e der)
1
= (91 [ 6 (Ao, g ) + A7)
1
> = (9] 2nai 5 — 31| Angr 5 = 3l Anai 5 + | Anor )

— 16
3 . 1 .
N PR ol v

L2

Using induction and estimate (4.51.1), we find

8 1 /1\? ™! "
Hm¢im}}i2s§(1+§+(§) b (3) )C(T+1)+(§) [N

(154 (5) e () ) e (3) Nl

-gC(T+1)+ (%)m~C§C(T+1),

and estimate (4.52.1) follows. Estimate (4.52.2) follows from (4.37), (4.52.1), and the
embedding H*(Q2) — L5(Q). O

4.4 Error Estimates for the Fully Discrete Convex
Splitting Scheme

In this section, we provide a rigorous convergence analysis for our scheme in the

appropriate energy norms. We shall assume that weak solutions have the additional
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regularities

¢ € L*(0,T;WH(Q)) nH' (0,T; HI'(Q)) N H*(0,T; H*()) N H*(0, T; L*(Q2)),
¢* € H* (0, T; H'(2)), (4.53)
pe L?(0,T; H(Q)),

where ¢ > 1. The norm bounds associated to the assumed regularities above are not
necessarily global-in-time and therefore can involve constants that depend upon the
final time 7. We also assume that the initial data are sufficiently regular so that
the stability (4.23) holds. Weak solutions (¢, 1) to (4.2a) - (4.2b) with the higher

regularities (4.53) solve the following variational problem: for all ¢ € [0, 77,

(019, v) +ea(u,v) =0 vV ve HY(Q), (4.54a)
(10) —calpp)— < (F —60) =0V GeHN(Q).  (L5ih)

We define the following: for any real number m € [0, M],

by = mTr, ¢m = ¢(tm)7 gzz),m = ¢m - Rh¢m7 85,771 = um - Rh/ﬂﬂ’

a

and for any integer 0 <m < M — 1,

B ¢m+1 o ¢m

5, pmE = 0" § R — 5.,
T

m+i 1 1 m+1 1 1 1

0y = 0" 9 oy = S g g — g

UZH% = x (™, ¢m) — <¢m+§>3‘
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Then the PDE solution, evaluated at the half-integer time steps ¢, , 1 satisfies

m+1 m+i m*% m+%
(57Rhgb 2,V> +ca (Rhu 2,1/) = (01 + oy ,V) ) (4.55a)

1 1 1 md 1
ca (R ghon ) - () = (87 0) - L (e )

) o)
+ é (o—;”*%, v) (4.55D)

for all v,9 € Sj,. Restating the fully discrete splitting scheme, Eqs. (4.7a) — (4.7b)
and (4.10a) — (4.10b), we have, for all v, € S,

((Lgb,%, V) +ea (u%, 1/) 0, (4.56a)
ca(9p.0) = (ki 0) = =2 (C(0h o) ) + = (A + 200%0):  (4560)

and, for 1 <m < M — 1, and all v,y € Sy,

<6T¢T+%, 1/) +ca (,uZH%, 1/) =0, (4.57a)
ca (on0) + Sa (ot =207 + 6y w) - (i E ) == 2 (x (6 o) )
+é (¢~hm+;7¢) :

(4.57Db)

Now let us define the following additional error terms: for any integers 0 < m < M,
EVT = Ryg™ =, 9= ¢ — o, (4.58)
and, for any integers 0 <m < M — 1

m—++ m+3 m+3
T B P

90



Setting m = 0 in (4.55a) — (4.55b) and subtracting (4.56a) — (4.56b), we have

<575;?’%,V> +ea (5“’%,1/> = (01% +

“a(g e e) - (5,’52,¢) (Sﬁé,zb)—%(X(¢1,¢°)—X(¢i7¢2),w)
-

1
5, l/) : (4.60a)

Q

o ¢) . (4.60D)

Similarly, subtracting (4.57a) — (4.57b) from (4.55a) — (4.55b), yields, for 1 < m <
M—1,
<(5T€:’m+§, I/> +ea (557m+§’ y) = <a71n+§ a;nJri,V) , (4.61a)

+
) o)

)+ 0 (8267, ) (4.61D)

where 72§2¢)™ 1= ™+ — 2p™ 4 opm 1

Now, define the additional error terms

05 =X (¢ZL+17 ¢Zl) — X (¢m+1’ ¢m) ) (462)

1 O+ 729,¢°, for m =0
R E,ﬁ . (4.63)
on 2, for 1<m<M-—1
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1 1 el
Then, setting v = &,°> in (4.60a) and ¢ = 575}?’2 in (4.60b), setting v = & "2 in
(4.61a) and ¢ = 578;?’m+5 in (4.61b), and adding the resulting equations, we have

YT 2

a (gt + gl ae ) + a (o260, 0.8 ) + e va,’j’ *

m+3 m+i Lpmti pm+1 pm+3 m+3 ¢m+1
:<al 2 gyt ) 4 (R 560" fea oy R 580
2

]- m+L m+1 m+L m+3 m m+2
+ B <04 i + o5 2 + 0y +2,575;f’ +2> + %a <5z¢m,678,f’ +2> . (4.64)

DO | ™

L2

for all 0 <m < M —1, where 7, := 1 —dp,, and J; is the Kronecker delta function.
The terms involving ~,, are “turned on” only when m > 1. Expression (4.64) is the

key error equation from which we will define our error estimates.

Lemma 4.4.1. Suppose that (¢, ) is a weak solution to (4.55a) — (4.55b), with
the additional regularities (4.53). Then for all t,, € [0,T] and for any h, 7 > 0,

there exists a constant C' > 0, independent of h and T and T, such that for all
0<m<M-—-1,

md 2 h2q+2 tm41 9
o] < e [ l0e e ds, (465)
tm
m+% 2 7_3 tm+1 5
’ 09 12 < @ . ||asss¢(5)||L2 dS? (466)
m+% 2 7_3 tm+1 5
HVA03 < IVADLG(s)|2ads,  (4.67)
Lz 96 J,
L 2 7_3 tm+1
vag il t IV 0ss6(s)]| % ds, (4.68)
1 m+1\2 1 m\2 m+i el T3 b 2 2
GRS 10 Sl (A N Iy B S (4.69)
2 2 96 ),
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and for alll1 <m < M —1,

|2V Aszgm

[7*vatem|. <

2
Iz2 <

,7.3 tm+1
T Iva0L) I ds
tm—1

7—3 tm+1

= IV ss0(5) |22 ds,

- 3 tm—1
. 3 1 2 7_3 tm+1
v(omt-Geregen)| < [ Iveuew as
| ey )| < [ mouso:
and finally,
3 t1
1 0 T 0 T 2 2
2 — — — < & 2 e
(o= 5o, <5 [ o

(4.70)
(4.71)

(4.72)

(4.73)

Proof. The proof of each of the inequalities above is a direct application of Taylor’s

Theorem with integral remainder 2.2.27 and Hélder’s Inequality (2.12). Inequality

(4.65) also uses the finite element approximation property for the Ritz projection,

m+% 2
0y

1 1]]2
57Rh¢m+§ - 5T¢m+§ L2
_ HRh¢m+1 _ ¢m+1 B Rh¢m _ ¢m

L2_
2

T T

L2

1
= [[Bu (7 = 0m) = (6™ = o™)|I
2

L2

< —

1 tmt1
— ;/Q/tm (RpOso(s) — 85¢(s))2 ds dx

1

=~ [ 1700 = .05 ds
1

<2 [ (O 1063 on)” s

h2q+2

=C

tma1 5
/ 10, 3(3) |2 ds.
tm
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<5(/ MS); ( / (Rd.6(5) — 0.0(6))" ds) |

2

L2



Inequality (4.66) proceeds as follows,

m+1][? L mat 1|2
‘02 ’ o H57'¢ T2 — gt 12
1 T 1 T 2
= |7 (ot = Gt - 5 (5) )
2
_ 1 o™ — ¢m+% _ <_Z> a¢m+% B 1 (_Z)Qa ¢m+%
T 2) " 2 2 t L
2
1 1 tm+1 1 tm
= ﬁ 5/ (tm-l-l - 3)2 asss¢(3) ds — 5/ (tm — 8)2 asssgb(S) ds
tm—‘—% tm+% Lo
2
1 bm+1 2 thr% 2
= 4_7_2 (tm—i-l - 3) 8sss¢(5) ds + (tm - S) 8538¢(S) ds
tm+% tm L2
1 tm41 A tm41 )
< ﬂ// (tmi1 — s) ds/ (OsssP(s))” ds dx
T Q tm+1 tm+1
bl b
]_ tm 1 tm 1
* 4—/ / - Sm/ 7 (0ust(9)) ds dx
QJtm tm
1 70 /tm+1 9 bt 9
= 7 3" asssz S ds +/ 8sss¢ S ds
s ([ Wt [ 7 1ot
7-3 tm+1
= 640 Hasss<ﬁ(5)”i? ds.
tm
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Inequalities (4.67) and (4.68) are similar. The proof for (4.67) now follows,

fraug |

B Z‘ ‘mwﬂ - VAT - SVAgG"

L2

+ VA" = VA" — (=) VAd"

L2
1 gmtl tm 2
-3 / (tmss = 90780(5) ds [ (60— )0.920(s) ds
tmT2
L2
1 tm+1 gmtl
Z// tms1 — S) ds/ (VAO,s(s))* dsdx
thr%

/ / mm )\ ds /tm (VAD.(s)) dsdx
4a(! /”““

7_ tm+41

~ 96,

¢t

(VAD,h(s))? ds + /
t

m

(VA633¢(3))2 deX)
HVAassQS( )HLQ ds.

Additionally, the proof for inequality (4.69) follows in the same manner as that for
inequality (4.67) above. The details for inequality (4.70) immediately follow,

|72V AsZe™||

;. = [Vom+t —2ve™ + vem |7,

= | Vg™t — Vo™ — 10,V ¢" + VL — V" — (—1)a V" ||}

Iz

tm+1 2

(tms1 — 5)VOssp(s) ds + / m_l(tm,l — 5)VOss0(s) ds
tm

</ tm/w(tmﬂ — 5% ds / " (V00(s)? dsdx
// tm_1 — 5) ds/tt (V,s0(5))* dsdx

m—+1
-7 / IV AD,6(5)||2 ds.
tm—1

L2
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Inequality (4.71) follows similarly. The final two inequalities uses similar tricks as

above. The details are as follows,

m+1 3m 1m— 2
[ (ot =30+ 30)

L2

::H%(V¢m”*-v¢m—%—vﬁ%v¢m)

w v ()

1 [tmr
5/ (tm-1 — 8)V0ss0(s) ds
tm

s

+Z; @m;—ﬁv&@@kag
Si/l?ﬁmfﬂfﬁljfwuww2@m
< / g /tm (VO.(s))° dsdx
"gLL;fV&M@fdwx
o / / " (V0s(s))” dsdx

7' tm+1
12 ||vass¢( >||L2 ds.

s

tm—1
And finally,

tl 9

(tl — 5)VOss(s) ds 2

/ /tf“—s is [ (V0000 dsix

73 / 9o ds

7_3

T2

V (;52 qﬁo__ ¢0
v ( ).

Hvassgb( )Hiz ds.
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Lemma 4.4.2. Suppose that (¢, 1) is a weak solution to (4.55a) — (4.55b), with the
additional regularities (4.53). Then, there ezists a constant C' > 0 independent of h

and T — but possibly dependent upon T through the reqularity estimates — such that,
for any h, 7 > 0,

t

tma1 m+1
. gcr?’/ |V 8ss(5)][7 ds+0¢3/ Hassqﬁ(s)”ip ds. (4.74)
tm

m

v

Proof. We begin with the expansion

vo_;fln-‘r% _ <;¢m+l 4+ = ¢ ) \v4 (_ m+1 + % (¢m)2)
+ (1 (¢m+1 ) \V4 ( ¢m+1 + qu ¢m+é)
1 m m
+5 (6 = (67 )

# () pome = (o)) wer, (4.75)

¢V ( (¢m+1)
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By the triangle inequality, Young’s inequality, and the embedding H'(Q) < L5(Q),

we have
m+3 1m 1m m-+1 1 m 1 m
|voi 2|, < H§¢ T V(§ (") + 5@ )2> .
1 m+1) 2 1 m\2 ]'ml ]'m m%
ez ez | (Ger g -]
m% 1 m+1)2 1 m\2 m%Q
+ o V(2(¢+)+2<¢> (¢+))L2
1 m 2 1 m\2 m%Q m+31
g g em = (o) | e

<Ol e+ 16 e+ (1674 | 987 ]+ 6™ o 196710

1 m+1 1 mo_ m+%
X ‘V<2¢ —|—2¢ ¢ )

L2

R s RS Ll Y
e -y

(4.76)

Using the assumed regularities (4.53) of the PDE solution, and appealing to the

truncation error estimates (4.68) and (4.69), the result follows. O

Lemma 4.4.3. Suppose that (¢, ) is a weak solution to (4.55a) — (4.55b), with the
additional reqularities (4.53). Then, there ezists a constant C' > 0 independent of h

and T, but possibly dependent upon T, such that, for any h,7 > 0,

112
| <c|vermn, +ofvesn,, ()

where 9™ = ¢™ — 7.
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Proof. We begin with the detailed expansion

AVo"E = (x (e o) — x (07, 6™)
(x (6% 61 = 5 (67, 6m) + 5x (6777, 67) = ox (67, o)

¥ (6761 = x (97 0™) )
— 3V (o (@ ) (o 0 )
V(w (@™ 0™ o) - (e = o™ )
V (w (@t o, om) - (o — o)

SV (w (97 0m ap) - (9 — o™))
= {(@)" + (@0 + 207 (3 + ) |V (0 — )

+{ (65" + (5 + 207 (6 + 67) | V (5 — ™)

4 {V (¢m+1 +¢m) . ( m+1 ¢m+1) + 2v¢m+1( m+1 +¢h)

l\')l»—t

| RN

+ 2¢m+1v¢m+1 4 2¢mv¢m} (gbzﬂ-l . ¢m+1)
+ {V (0™ +¢™) - (o +¢™) +2Ve™ (05 + o)
+20m190m 1207907 | (o — o). (1.78)

Then, using the unconditional a priori estimates in Lemmas 4.3.8 and 4.3.12, the

assumption that ¢ € L% (0,T;W5(Q2)), and the embedding H'(2) — L5(2) we
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have, for any 0 < m < M — 1,

1
m+3

HVU5

o SCUTEm ot 920} s { o I + Dol |
#0 (e s+ 1) > { (1997 1971

o 6m 10 s+ 107 s+ )

<C|[verm |, + 0 |veen .. (4.79

]

Lemma 4.4.4. Suppose that (¢, 1) is a weak solution to (4.55a) — (4.55b), with the
additional regularities (4.53). Then, there ezists a constant C' > 0 independent of h

and T such that, for any h,™ > 0,

tm+1

2 tm
o zmer [ I90usoi ds ort [ 190u0(0)] ds

tm—1 tm

+ C||VE™ |2, + mC || VEP™ Y2, + GoumCh |Go|2ass s (4.80)

where EY™ 1= ¢™ — ¢ and Oy is the Kronecker delta.

Proof. For m = 0, using the truncation error estimate (4.73) and a standard finite

element estimate for the Ritz projection, we have

[voi]|, < 2] (62— 60— Zao)|, + 2019 (60~ )2
3 t1

< 2T [ 1900092 ds + O fonfys (451)
to

2
L2

with the observation that ¢2 ‘= Rp¢y. For 1 < m < M — 1, using the truncation

error estimate (4.72), we obtain

2

ng%/tm_l IV0(s)172 ds + = [[VE" [+ 5 [VES .
(4.82)

1
m+3

HV06
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We now proceed to estimate the terms on the right-hand-side of (4.64).

Lemma 4.4.5. Suppose that (¢, 1) is a weak solution to (4.55a) — (4.55b), with the
additional regularities (4.53). Then, for any h, 7 > 0 and any « > 0 there exists a

constant C' = C(«,T) > 0, independent of h and T, such that, for 0 <m < M — 1,

€ m m m+ i m57—2 m m+1 o mtl 2
ga(é';f’ oy gpm g gl +2>+7Ta<53€,f’ 0.8 +2)+§ va,‘; *2

L2
2 2 ’ m-+1 2

< ofjverf, v ezl s v, + oot
L . L :

o (4.83)
where
m+1 h24+2  [ftm+l mad|?
RMTs — /tm ||a$¢(8)||§—1q+1 ds+h2q y +1 .

m 2 m m—1|2
+ R ‘gb +1’Hq+1 +h% ‘Qb ﬁ{qﬂ + 7mh2q |¢ 1|Hq+1

tm+1 tm+l
70 [ 0 e ds 47 [ 1060 [ s
tm tm

tm41

tm
s [ V0o ds 0 [ V066 ds

tm—1 tm
tm+1

tm
A / |V 20,,6(s)122 ds + 7° / [VAL6(s)[2ds. (4.84)

tm—1 tm

Proof. Define, for 0 < m < M — 1, time-dependent spatial mass average

grmta g (5;? 2 1) . (4.85)
Using the Cauchy-Schwarz inequality, the Poincaré inequality, with the fact that

1 s 1
(ai"“ +oyte, 1) —0,
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and the local truncation error estimates (4.65) and (4.66), we get the following

estimate:

m+2 m+2 ,u,m+l
‘(01 oy, 167 )| =

mtg mty apmtg pmtg
(01 ’ + 0y 27€h 2_5h ’

m+3 m+3 pm+ 5 pamt 5
SHo.l 2_'_0.2 2 (C/’h Q_Sh 2

L2

L2
m+3 m+3 pmt g
<Clloy *+o0y A\
L2 L2
2 102 112
m+1 m+s € wym+ 5
L2 2 2 L2
h2q+2 tm+41 9
<c 19:6()[3pess d
tm

2

3 tm41 m 1
sl [ Nl ds + 5| verm

640 J, L2
(4.86)
Standard finite element approximation theory shows that
pammt _ m+i _ m+l ql|,m+i
[veem |, = 7 (Rt =) < onefumed] -
Applying Lemma 2.2.22 and the last estimate, we have
1 1 1 1
et ael ) <o |verm | e
‘( TR - L2 h ~1,h
1
< Chd|,mts ’ ¢m+3
<Ch B Hat1 57'5h 1k
2
< op2a | mid @ 1,607+ |
<Ch*|um™*2 i + 5 0-&, o’ (4.87)

)
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Using Lemma 2.2.22 and estimate (4.67), we find

1 1 1 1
ca <0?+276T€§,m+2> = —¢ <AU?+2,575,?M+2>

mt g
5,Em 2

<C HVAJ:TJF% L

~1h
2

3 tm+1 1
<C T_/ IV ADssd(5) |52 ds + 2 575,?’m+2
9% J, 6

“1h

(4.88)

Now, using Lemmas 4.4.2 and 2.2.22, we obtain

-1

1
e 5,.E0""

1 1 1
(o aei ) | < wor

L2 ~1h

1112
5Tgfvm+ 2

112
<l +

—1h

tm41
<07 / 17046 (s) 122 ds
tm

112
5,02

“1h

(4.89)

tmt1
vor [ oud o) ds + 5
tm

Similarly, using Lemmas 4.4.3 and 2.2.21, the relation £6™+1 = £m+1 L g8 anq

a standard finite element error estimate, we arrive at

2 1112
—1 | mt3 ¢,m+$>‘ H mg o ¢m+3
c ‘(05 0.8 <C||vor |+ g lleE
m+1](2 m |2 o $;m+11|2
<cvem |, + o vesm |, + 2o

<o|vegm L+ o|vem| | +ofvern:
— a L2 h 12 a 12

2

2

1
+c|vepn| 560

+a
2 6

< Ch ’¢m+1|ijq+1 . va;i),m—i-l

“1,h

2
L2 + Ch2q |¢m|ilq+1
2

2
+C Hvs,f”mH +2

¢m+3
Lz 6 O

. 4.90
i, (4.90)
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Applying Lemmas 4.4.4 and 2.2.22, the relation £#mF! = £&mtl 4 &?’mﬂ, and a

standard finite element error estimate,

o 2

1 1 112
() el

_ m+%
e’ 5.E

h

~1,h

tm tm+1
<o (vm [ 190l ds+ [ 1900 ds)

tm—1 tm
2

rC Hve,fva; + Cym Hve;fvm—l‘

L2
« m+112
+ CR |§™ fain + O™ 67 [ + 5 |[56 |
(4.91)
To finish up, using (4.69),
YmET? (2 im o admtl T3 [hn 9 o $m+1 |2
a(m 0.E ) <O [ IVAOo(s)|2a ds + = ||6,€ .
4 3 Ji s 6 ~1,h
(4.92)

Combining the estimates (4.86) — (4.92) with the error equation (4.64), the result
follows. O

Lemma 4.4.6. Suppose that (¢, 1) is a weak solution to (4.55a) — (4.55b), with the
additional reqularities (4.53). Then, for any h,T > 0, there exists a constant C' > 0,

independent of h and T, such that

mt+t|?
5,02

2
Lt CR™ 2, (4.93)

1
<22 |vept
h

where R™Y2 is the consistency term given in (4.84).
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Proof. Setting v = T, (575;?’%> in (4.60a) and v = Ty <575,(f’m+%> in (4.61a) and

combining, we have

112
57-825’m+2

— —ea (& T (880 ) (7T 4 0L T (0,67

e g (e a2 )

~1,h

<e va,f’m*% . 5, E0ms i
o oL (o)
<o~ ch o],
+C ’ O';H_% + a;nJr% ; + }l 578,?’”1% 217h
<e?||vemts i + % 5. £0m : o OR™, (4.94)

for 0 < m < M —1 and where we have used Lemma 4.4.1. The result now follows. O

Lemma 4.4.7. Suppose that (¢, 1) is a weak solution to (4.55a) — (4.55b), with the
additional regularities (4.53). Then, for any h, T > 0, there exists a constant C' > 0,

independent of h and 7, but possibly dependent upon T, such that

5 m m mt 1 mT2E m mil\ € mt12
Sa(gpm e el ) + I a (9280, 0,607 ) + T || v

L2
2

< c|lvepm|[ +c va,fva; + Y Hvs;fvm—lH; 4 OR™H. (4.95)

L

Proof. This follows upon combining the last two lemmas and choosing « in (4.83)

appropriately. O

Using the last lemma, we are ready to show the main convergence result for our

second-order splitting scheme.

105



Theorem 4.4.8. Suppose (¢, 1) is a weak solution to (4.55a) — (4.55b), with the
additional regularities (4.53). Then, provided 0 < T < Ty, for some 7y sufficiently

small,

max “V5¢m+1“ Z vaﬂmﬂ

0<m<M—1

< O(T)(7* + h*) (4.96)

L2

for some C(T') > 0 that is independent of T and h.

Proof. Using Lemma 4.4.7, we have

(HV gomit1

+ 3= (Hvs;j”m“ - vs;f””HLQ - ||vepm - vepm

[erel) e

L2

2
L2

2
<C va;fvm“ H FOR™. (497)

L2

2
+c||vern|

L2

2
+ YmC HVS,‘f’m_l L

Letting m = 0 in the previous equation and noting that 5}? Y =0 and 4 = 0, then

2

1 2
Hv et va,’;"2 LG va,f’vl |+ ORA. (4.98)
fo<7<7:= ﬁ < Cil, it follows from the last estimate that

2

HW;?’IH; + % va,fj’% < rORE < C(+* + B2, (4.99)

L2
where we have used the regularity assumptions to conclude TCR: < C (74 + h29).
Now, applying TZf;:O to (4.97),

¢ l
2
vaﬁbf-‘rlH Z vaﬂm+2 SCTZRW-F% + CQTZ va;f),m-f-l‘
m=0

L2

L2

vam

(4.100)

12 .
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If0<7'§7'0::21

35 < 0%7 it follows from the last estimate that

2 ¢ C ¢ 2 ] 2
d0+1 < m+1 2T H ém 1 ‘ ¢,1‘
qu ‘H_th;R +1_Gﬂg;<wh L+l
V4
2
<O +h) +0ry Hve;f”m‘ e (4.101)
m=0

where we have used (4.99) and the regularity assumptions to conclude 7 Z%;Ol Rtz <
C(1* + h?7). Appealing to the discrete Gronwall inequality 2.2.26, it follows that, for

any 0 < < M —1,
2

)Wﬁ“ﬂmgmﬂuﬂw%. (4.102)

Considering estimates (4.99), (4.100), and (4.102) we get the desired result. [

Remark 4.4.9. From here it is straightforward to establish an optimal error estimate

of the form
, M—1 )
¢,0+1 m+l 4 2
Jmax [[VEXI], 47 Z_O vaﬂ | <omyet+ (4.103)

using €9 = £ + 525, et cetera, the triangle inequality, and the standard spatial

approzimations. We omit the details for the sake of breuvity.

4.5 Numerical Experiments

In this section, we provide some numerical experiments to gauge the accuracy and
reliability of the fully discrete finite element method developed in the previous
sections. We use a square domain Q = (0,1)2 C R? and take T, to be a regular
triangulation of €2 consisting of right isosceles triangles. To refine the mesh, we
assume that 7,, ¢ = 0,1,..., L, is an hierarchy of nested triangulations of {2 where
T, is obtained by subdividing the triangles of 7,_; into four congruent sub-triangles.

Note that hy 1 = 2hy, £ = 1,..., L and that {7;} is a quasi-uniform family. (We use
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a family of meshes 7, such that no triangle in the mesh has more than one edge on
the boundary.) We use the P finite element space for the phase field and chemical
potential. In short, we take ¢ = 2.

We solve the scheme (4.7a) — (4.10b) with € = 6.25 x 1072. The initial data for
the phase field is taken to be

& =T, {%(1.0 - cos(4.0m)> : (1.0 - cos(2.07ry)> - 1.0} , (4.104)

where Z;, : H?(Q2) — S, is the standard nodal interpolation operator. Recall that
our analysis does not specifically cover the use of the operator Z;, in the initialization
step. But, since the error introduced by its use is optimal, a slight modification of
the analysis shows that this will lead to optimal rates of convergence overall. (See
Remark 4.3.4.) To solve the system of equations above numerically, we are using the
finite element libraries from the FEniCS Project [47].

Note that source terms are not naturally present in the system of equations (1.2a)
— (1.2¢). Therefore, it is somewhat artificial to add them to the equations in attempt
to manufacture exact solutions. To get around the fact that we do not have possession
of exact solutions, we measure error by a different means. Specifically, we compute
the rate at which the Cauchy difference, 6. := C,]l\f F— ,]l\fc, converges to zero, where
hy = 2h., 7 = 27,, and 7/ My = 7.M, = T. Then, using a linear refinement path,

i.e., 7 = C'h, and assuming ¢ = 2, we have

M
10l s = iy’ = G

<G =@+l = @) = OUg+rE) = Od).
(4.105)

H

The results of the H! Cauchy error analysis are found in Table 4.1 and confirm second-
order convergence in this case. Additionally, we have proved that (at the theoretical
level) the modified energy is non-increasing at each time step. This is observed in our

computations and shown below in Figures 4.1 and 4.2.
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Table 4.1: H' Cauchy convergence test. The final time is 7 = 4.0 x 10~!, and the refinement
path is taken to be 7 = .001v2h with ¢ = 6.25 x 1072, The Cauchy difference is defined via
d¢ = Qn; — Pn., where the approximations are evaluated at time ¢t = T', and analogously for §,,.
Since ¢ = 2, i.e., we use P, elements for these variables, the norm of the Cauchy difference at T is

expected to be (9(7']%) +0 (h?) =0 (h?)

h. hy 106]] 1 rate 16,1 g7 rate
Vi Vi L148x 10T - 1307 x 10T -
V2/32 V2les 2939 x 1072 1.95 3.299 x 1072 1.98
V2/6s V2/128  7.468 x 1073 1.97 8.295 x 1073 1.99
V2/128 V2Z/a56 1.913 x 1072 1.95 2.087 x 107% 1.99

Energy Dissipation
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Figure 4.1: Energy dissipation for the second order numerical scheme for the Cahn-Hilliard

problem. All parameters are as listed in Table 4.1 and we have taken h = g

Energy Dissipation - First Four Time Steps

0 0.0000625 0000125 0.0001875 0.00025

Figure 4.2: Energy dissipation for the second order numerical scheme for the Cahn-Hilliard
problem. If we zoom in on the first four time steps, we are able to see the difference between
the modified energy F'(¢) and the Cahn-Hilliard energy E(¢). All parameters are as listed in Table

4.1 and we have taken h = g
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Chapter 5

Future Directions

Chapter 5 is devoted to outlining a few possible avenues for the continuation of

research presented in this dissertation.

5.1 Global-in-Time Estimates

Note that while all the stability and error estimates presented throughout this
dissertation are unconditional with respect to the time and space step sizes, 7 and h,
they are not global-in-time, since the bounds depend on the final time 7". Recently,
Guo et al. [32] have developed analysis tools to show that solutions to their finite
difference version of the scheme (4.7b)—(4.7b) are bounded globally-in-time for the
phase field variable in the L*(0,7; L>(2)) norm, but at the price of a mild time
step restriction. With their success in mind, we would like to revisit the analysis
of the finite element version of the second-order convex splitting scheme for the
Cahn-Hilliard problem (1.2a)—(1.2c) with the goal of obtaining global-in-time stability
results. Furthermore, we would like to develop and analyze a second order convex-
splitting scheme for a CHS system of equations, similar to (3.7a)-(3.7e) described
in Chapter 3. In particular, investigation of whether it is possible to prove stability

estimates that are unconditional with respect to the time and space step sizes and
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global-in-time should be completed. A rigorous proof of optimal-order error estimates

for the second-order convex splitting schemes could then be examined.

5.2 The Cahn-Hilliard-Navier-Stokes Equations

Chapter 3 of this dissertation presented a numerical scheme for a mathematical model
which could be used to describe the flow of a very viscous block copolymer fluid. The
model paired the Darcy-Stokes equations (used to describe the fluid motion) with
the Cahn-Hilliard equations creating a diffuse interface setting. However, the Darcy-
Stokes equations can be somewhat limiting in describing the behavior of fluids. To
capture more complicated dynamics of two-phase fluid flows, one should consider
the Navier-Stokes equations. These equations have become the leading equations
in modeling incompressible, viscous Newtonian fluids and, due to the wide range of
applications, continue to be of tremendous mathematical interest. In particular, much
research has been done on the so called Model H [36] which pairs the Navier-Stokes
equations with the Cahn-Hilliard equations and which has become the accepted model
for flows involving incompressible components with matched densities [21, 22, 24, 38,
40, 29, 57, 56] and references therein. Most recently, Jie Shen and Xiaofeng Yang [58]
proposed two new numerical schemes for the Cahn-Hilliard-Navier-Stokes equation,
one based on stabilization and the other based on convex splitting. Their new schemes
have the advantage of being totally decoupled, linear, and unconditionally energy
stable. However, no formal error analysis has been performed. Using the theory set
forth in this dissertation, we would like to complete the formal error analysis for the
convex splitting scheme presented in [58] if possible.

Additionally, there still remains a question of how to treat the case where the fluid
densities do not match. Jie Shen and Xiaofeng Yang [56] likewise address this issue
in [58]. The CHNS model they present is thermodynamically consistent and satisfies
an energy dissipation law. They go on to introduce two numerical methods similar

to those presented for the matched density case above. Abels et. al. [1] introduce
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a thermodynamically consistent generalization to the Cahn-Hilliard-Navier-Stokes
model for the case of non-matched densities based on a solenoidal velocity field. The
authors demonstrate that their model satisfies a free energy inequality and conserves
mass. As a follow-up, Garcke et. al. [27] present a new time discretization scheme
for the numerical simulation for this model. They show that their scheme satisfies a
discrete in time energy law and go on to develop a fully discrete model which preserves
that energy law. They are furthermore able to show existence of solutions to both
the time discrete and fully discrete schemes. Again, however, no formal error analysis
is constructed for either of these schemes.

A third model/scheme for consideration for the Cahn-Hilliard-Navier-Stokes
equations is presented in [33] by Daozhi Han and Xiaoming Wang. The scheme
is presented as a second order in time, uniquely solvable, unconditionally stable
numerical scheme for the CHNS equations with match density. The scheme is
based on second order convex splitting for the Cahn-Hilliard equation and pressure-
projection for the Navier-Stokes equation. The authors show that the scheme satisfies
a modified energy law which mimics the continuous version of the energy law and
prove unique solvability. However, no formal error analysis is presented and stability
estimates are restricted to those gleaned from the energy law. No advanced stability
estimates are obtained. The overall scheme is based on the Crank Nicholson time
discretization and a second order Adams Bashforth extrapolation. Recall that the
second order scheme we present in this dissertation for the Cahn-Hilliard equations is
also based on the Crank Nicholson time discretization and a second order Adams
Bashforth extrapolation but includes an additional second order advection term.
In order to achieve advanced stability estimates and provide a formal convergence
analysis, we suggest adding this additional term into the authors’ proposed scheme.
As a preliminary step to the course of action described below, we will make the
necessary alteration to the scheme presented in [33] and complete the stability and

convergence analyses following the work presented in this dissertation.
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We now describe a course of action for pursuing numerical analyses for CHNS
models with density and viscosity disparity. As a first step, we would like to build
on the models described in the papers above and develop and analyze both first and
second-order convex splitting schemes for the density-matched CHNS system with
the goal of achieving unconditional stability and optimal order error estimates in line
with the analyses presented in this dissertation. Again, it may be possible to obtain
some or all of the anterior stability estimates unconditionally with respect to 7 and
h, and investigation of whether it is possible to obtain some of the stability bounds
globally-in-time would follow. If the stability ¢, € L*°(0,7;L>(2)) is available,
as preliminary evidence suggests, then it should be possible to derive optimal-order
error estimates. The completion of the analyses in the first two steps would then open
the door for investigation of first and second-order convex splitting schemes for the
general CHNS system for density and viscosity mismatch. Because the structure of
the diffusion equation is unchanged in all of the model variations, there is significant
reason to be optimistic that some or all of the stabilities described herein will be
achievable and will lead to optimally convergent and efficient numerical schemes for

the CHNS systems.

5.3 Variable Parameters and Mobilities

From Chapter 3, we note that we have only considered parameters and mobilities
of constant values. However, this simplifying assumption may prove to be physically
unrealistic. Therefore, as a future direction, it would be natural to consider mobilities
and parameters which take on physical meaning such as viscosity, permeability,

density etc. as variable rather than static in line with their physical meanings.
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5.4 Fast Solvers

The numerical schemes (3.7a) - (3.7e) and (4.7a) - (4.10b) require solving very large
non-linear systems. Therefore, taking fine discretizations in practice require long
computational run times. However, there are a few options to improving the amount
of required computational work and, thus, reducing run times. One promising option
is the finite element multigrid method. In their book, Brenner and Scott [5] describe
a multigrid method which provides an optimal order algorithm for solving a two
dimensional piecewise linear elliptic boundary value problem. The two main features
of the multigrid method are smoothing on the current grid and error correction on a
coarser grid. The advantage is that the amount of computational work is then only
proportional to the number of unknowns in the discretized equations. We believe a
multigrid method for the schemes presented in Chapters 3 and 4 are possible and well

worth exploring.
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