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Abstract

This dissertation investigates numerical schemes for the Cahn-Hilliard equation

and the Cahn-Hilliard equation coupled with a Darcy-Stokes flow. Considered

independently, the Cahn-Hilliard equation is a model for spinodal decomposition and

domain coarsening. When coupled with a Darcy-Stokes flow, the resulting system

describes the flow of a very viscous block copolymer fluid. Challenges in creating

numerical schemes for these equations arise due to the nonlinear nature and high

derivative order of the Cahn-Hilliard equation. Further challenges arise during the

coupling process as the coupling terms tend to be nonlinear as well. The numerical

schemes presented herein preserve the energy dissipative structure of the Cahn-

Hilliard equation while maintaining unique solvability and optimal error bounds.

Specifically, we devise and analyze two mixed finite element schemes: a first order

in time numerical scheme for a modified Cahn-Hilliard equation coupled with a non-

steady Darcy-Stokes flow and a second order in time numerical scheme for the Cahn-

Hilliard equation in two and three dimensions. The time discretizations are based

on a convex splitting of the energy of the systems. We prove that our schemes are

unconditionally energy stable with respect to a spatially discrete analogue of the

continuous free energies and unconditionally uniquely solvable. For each system,

we prove that the discrete phase variable is essentially bounded in both time and

space with respect to the Lebesque integral and the discrete chemical potential is

Lesbegue square integrable in space and essentially bounded in time. We show these

bounds are completely independent of the time and space step sizes in two and three

v



dimensions. We subsequently prove that these variables converge with optimal rates

in the appropriate energy norms. The analyses included in this dissertation will

provide a bridge to the development of stable, efficient, and optimally convergent

numerical schemes for more robust and descriptive coupled Cahn-Hilliard-Fluid-Flow

systems.
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Chapter 1

Introduction

Consider a binary fluid in a closed container consisting of two distinct atomic or

molecular components, oil and water for example. Suppose, for the sake of illustration,

that one is colored white (say the A atoms), and the other is colored black (say

the B atoms). Further suppose that at high temperatures, the fluid is perfectly

and uniformly mixed. The fluid would then appear grey in color, due to the

uniform distribution of volume fractions throughout the container. But, when the

mixture is suddenly cooled below a certain temperature, the fluid separates into two

distinguishable phases with one nearly perfectly white (A-rich phase), and another

nearly perfectly black (B-rich phase). Following this, on a very slow timescale, some

of the white and black phase regions grow while others shrink, in a process called

coarsening. The total volumes of the white and black fluid phases must remain

essentially constant because the number of white and black atoms (or molecules) in

the system is fixed. This phenomenon, depicted in Figure 1.1, is termed spinodal

decomposition [49], and it occurs in both solid and fluid binary systems. The theory

for spinodal decomposition was developed by Cahn and Hilliard [6, 7] as a way to

describe certain phase transformations in solid-state alloys during quenching (rapid

temperature reduction). The model they derived is known as the Cahn-Hilliard (CH )

equation and is defined below.
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t = 80 

t = 5 t = 30 

t = 180 t = 400

t = 0 

Figure 1.1: [61] Simulation snapshots of phase separation by which two fluids decompose.

Let Ω ⊂ Rd, d = 2, 3, be an open domain and let φ : Ω → R indicate the fluid

states described above. For a subdomain Ω1 ⊆ Ω which is comprised entirely of A

atoms, φ(x) = +1 for all x ∈ Ω1. Likewise, φ(x) = −1 for all x ∈ Ω2 ⊆ Ω means

the subdomain Ω2 is comprised entirely of B atoms and the state φ = 0 represents

a perfect 50-50 mixture of A and B, et cetra. Now suppose the fluid has an energy

that depends upon φ as follows [7]:

E(φ) =

∫
Ω

{
1

ε
f(φ) +

ε

2
|∇φ|2

}
dx, f(φ) =

1

4

(
φ2 − 1

)2
, (1.1)

where ε is a positive constant and f is the homogeneous energy density. The Cahn-

Hilliard equation is a bistable (time-dependent) gradient flow with respect to the total

energy E [6, 7]:

∂tφ = ε∆µ, in ΩT , (1.2a)

µ := δφE = ε−1
(
φ3 − φ

)
− ε∆φ, in ΩT , (1.2b)

∂nφ = ∂nµ = 0, on ∂Ω× (0, T ), (1.2c)
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where µ is the chemical potential, δφE denotes the variational derivative of E with

respect to φ, and the total energy E represents a competition between f , which

is minimized by the spatially uniform states φ = ±1, and the gradient energy

density, ε
2
|∇φ|2, which penalizes any derivatives of φ, allowing interfacial energy to

be modeled. By bistable, we mean that the energy is composed of a convex piece

and a concave piece. (See Figure 1.2). The boundary conditions represent local

thermodynamic equilibrium (∂nφ = 0) and no-mass-flux (∂nµ = 0). The equation is

mass conservative, dt
∫

Ω
φ(x, t) dx = 0 – which reflects the fact that the total numbers

of the components remain fixed – and energy dissipative, dtE = −ε ‖∇µ‖2
L2 ≤ 0.

Figure 1.2: Demonstration of the bistable property exhibited by the Cahn-Hilliard energy. Energy
density is measured along the y-axis and the phase parameter is measured along the x-axis.

At later times, i.e., in the coarsening regime mentioned above, solutions of the

CH equation have the following diffuse interface structure (see Figure 1.3): pure

phase A regions are separated from pure phase B regions by diffuse interfaces of

thicknesses ∼ ε, such that the indicator function is essentially a hyperbolic tangent

in the direction perpendicular to the interface. Indeed, for a hypothetical one-

dimensional system, non-trivial energy minimizers of E are (essentially) given as

φ(x) = ± tanh
( (x−x0)

(
√

2ε)

)
, which represents a “diffuse” interface between fluids A (+1)

and B (−1) of thickness O(ε). This concept, where a material interface is described

by the continuous variation of an indicator function, precedes the work of Cahn and

Hilliard, dating back to van der Waals and Lord Rayleigh [53, 54, 60] and is commonly

referred to as diffuse interface theory.
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-1.0

0.0

1.0

φ Sharp Interface
ε  = ε1
ε  = ε2

ε1 > ε2

φ

1.0

0.0

-1.0

(a) O(ε1) O(ε2)(b)

Figure 1.3: (a) A 2D dumbbell-shaped droplet described by a diffuse interface in a time snapshot
from a Cahn-Hilliard simulation. Where φ ≈ +1 (resp., −1), we have fluid phase A (resp., B). (b)
As ε is decreased, the diffuse interface describing a hypothetical 1D particle becomes thinner. The
limit as ε→ 0 is a characteristic function, which represents the “sharp” interface profile.

Besides describing the process of spinodal decomposition, the Cahn-Hilliard

equation is commonly paired with other models – generally through nonlinear coupling

terms – that describe important multi-phase, multi-physics processes. Prominent

examples of these multi-physics models include the Cahn-Hilliard-Navier-Stokes

equation, describing two-phase flow [1, 21, 29, 30, 40, 41, 46, 48, 56], the Cahn-

Hilliard-Hele-Shaw equation [44, 45, 62] which describes spinodal decomposition of

a binary fluid in a Hele-Shaw cell, and the Cahn-Larché equation [25, 28, 42, 64]

describing solid-state, binary phase transformations involving coherent, linear-elastic

misfit. The role the Cahn-Hilliard equation plays in the pairing is to provide a diffuse

interface-type description of the boundary separating the phases. The advantage is

that explicit tracking of the motion of interfaces in the system is not required as the

motion is captured by the indicator function. It is important to note that as the

interfacial width parameter, ε, goes to zero, the diffuse interface profile approaches a

sharp interface profile as demonstrated in Figure 1.3. Chapter 3 of this dissertation

will focus on the pairing of a modified Cahn-Hilliard equation with a Darcy-Stokes

equation which can be used to describe the flow of a very viscous block copolymer

fluid [11, 10, 51, 52, 66, 67]. The Cahn-Hilliard equation is modified by adding a

“growth” term shown here in the definition of the chemical potential:

∂tφ = ε∆µ, µ := δφE =
1

ε

(
φ3 − φ

)
− ε∆φ− θ∆−1

(
φ− φ0

)
, ∂nφ = ∂nµ = 0,

(1.3)
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where ∆−1 is the inverse laplacian operator relative to the natural boundary

conditions and φ0 = 1
|Ω|

∫
Ω
φ0(x)dx. Hence, the modified Cahn-Hilliard-Darcy-Stokes

problem with natural and no-flux/no-flow boundary conditions may be written as:

∂tφ = ε∆µ−∇ · (uφ) in ΩT , (1.4a)

µ = ε−1
(
φ3 − φ

)
− ε∆φ+ ξ in ΩT , (1.4b)

−∆ξ = θ
(
φ− φ0

)
in ΩT , (1.4c)

ω∂tu− λ∆u + ηu +∇p = γµ∇φ in ΩT , (1.4d)

∇ · u = 0 in ΩT , (1.4e)

∂nφ = ∂nµ = ∂nξ = 0, u = 0 on ∂Ω× (0, T ). (1.4f)

Here φ represents the polymer concentration, φ0 is the initial mass average over the

domain Ω, and u and p represent the fluid velocity and pressure, respectively. We

assume that the dimensionless model parameters satisfy ε, γ, λ > 0 and η, ω, θ ≥ 0.

The parameters are understood such that, ε is the interfacial thickness, λ is the fluid

viscosity, η is the Darcy drag parameter, and γ is a surface tension. Furthermore,

the term ξ represents a non-local interaction that can suppress or enhance separation

according to the sign of θ which represents the non-local interaction strength. The

multi-physics coupling terms, γµ∇φ in the flow equation and ∇· (uφ) in the diffusion

equation, essentially represent the surface tension-flow interaction. The parameter ω

is used to indicate whether or not the flow may be taken as steady and takes on only

the values ω = 0 for steady flow and ω = 1 for non-steady flow. We remark that it is

possible to replace the right-hand-side of Equation (1.4d), the excess forcing due to

surface tension, by the term −γφ∇µ. The equivalence of the resulting PDE model

with that above can be seen by redefining the pressure appropriately.

For the coupled system we consider an energy which is closely related to (1.1):

E(u, φ) =

∫
Ω

{
ω

2γ
|u|2 +

1

ε
(φ2 − 1)2 +

ε

2
|∇φ|2 +

θ

2

∣∣∇ (∆−1(φ− φ0)
)∣∣2} dx. (1.5)

5



t = 3o t = 40o

t = 80o t = 120o

t = 160o t = 200o

Figure 1.4: [13] Phase separation of a two-dimensional (very viscous) block-copolymer fluid in shear
flow. The parameters are Ω = (0, 8)× (0, 4), ε = 0.02, γ = 0.4, θ = 15000, ω = 0, η = 0, φ0 = −0.1.
The shear velocity on the top and bottom is ∓2.0, respectively. Periodic boundary conditions are
assumed in the x-direction. The time unit referenced above is τ = 0.02. The long-range θ term
suppresses phase separation and coarsening, relative to the case θ = 0, and relatively long and thin
phase domains emerge. Note that φmin ≈ −0.75 and φmax ≈ 0.75. These simulation results are
comparable to other studies [66, 67] that use a different dynamic density functional approach. With
a slightly larger value of θ, the phase domains remain as dots and can form into hexagonal patterns,
as in [67].

As with (1.1), this energy typically “prefers” the fluid phase states φ ≈ ±1 (the

pure phases) separated by a diffuse interface of (small) thickness ε. However, the

long-range energy described by the last term can change this picture [3, 10, 11, 51].

Specifically, when θ > 0, the energy term θ
2

∥∥∇ (∆−1(φ− φ0)
)∥∥2

L2 in (1.5) is convex

and stabilizing, and this energy tends to stabilize (or suppress) both the phase

separation and the coarsening processes. This is observed in Figure 1.4 where we

show simulation snapshots using the equations to describe the phase separation of a

block-copolymer in shear flow. The parameters are given in the caption. If θ < 0 the

term is concave and destabilizing. In this case, the process of phase separation will

be enhanced. Throughout this dissertation we assume that θ ≥ 0.

6



Due to the extensive use of the Cahn-Hilliard equation in multi-physics modeling,

there is a need to develop stable, efficient, and convergent numerical schemes for the

equation. This is a challenge because the Cahn-Hilliard equation is highly nonlinear

and of high (derivative) order. For instance, defining τ and h to be the time and

space steps sizes, respectively, if naive explicit time stepping strategies are used, a

restrictive stability constraint of the order τ ≤ Ch4 (CFL condition) must be enforced

[59]. The goal in creating numerical schemes for the Cahn-Hilliard equation and

equations such as the modified Cahn-Hilliard-Darcy-Stokes equation is to preserve

the energy dissipative structure of the equations at the time-discrete level. As an

added benefit, one would also hope that the schemes are uniquely solvable, given any

time step size. The first property is called unconditional energy stability and the

second is unconditional unique solvability. It is also important, if possible, to prove

that one’s method is convergent, with optimal error bounds.

The numerical schemes presented in this dissertation utilize an energy splitting

approach similar to the convex splitting technique popularized by Eyre [20]. The

standard convex splitting technique of Eyre is first-order accurate in time and uses

the fact that the energy (1.1) may be represented as the difference between two purely

convex energies:

E(φ) = Ec(φ)− Ee(φ), Ec(φ) =
1

4ε
‖φ‖4

L4 +
ε

2
‖∇φ‖2

L2 +
|Ω|
4ε
, Ee(φ) =

1

2ε
‖φ‖2

L2 .

(1.6)

The principal idea is to treat the variation of Ec implicitly and that of Ee, explicitly.

The concept can be extended to coupled systems such as the modified Cahn-Hilliard-

Darcy-Stokes as will be demonstrated in Chapter 3, and with slight modification,

to second-order accuracy in time, as was shown originally in [37] and as will be

exhibited in Chapter 4. The main advantages of the convex splitting approach are

that the resulting schemes are unconditionally energy stable and unconditionally

uniquely solvable. An added advantage is that optimal-order error estimates are often

obtainable in this framework with fewer time and space step parameter constraints.

7



Furthermore, the numerical schemes presented in Chapters 3 and 4 retain the mass

conservation properties and dissipative structure observed in the both the Cahn-

Hilliard equation and the Cahn-Hilliard-Darcy-Stokes system.

1.1 Summary of this Dissertation

The importance of the work presented by this dissertation is reflected in the growing

popularity in the use of diffuse interface models in multi-physics applications. As

such, there is a need to develop stable, efficient, and convergent numerical schemes for

the Cahn-Hilliard equation and couple Cahn-Hilliard-fluid-flow systems and extensive

research has been conducted in this area, in particular for first order (in time) schemes,

see [3, 8, 16, 17, 18, 21, 23, 26, 34, 31, 39, 40, 41, 62] and the references therein. The

analyses presented on numerical schemes for coupled Cahn-Hilliard-fluid-flow systems

focus on two types of limited convergence results: (i) error estimates and convergence

rates for the semi-discrete setting (time continuous) and/or (ii) abstract convergence

results with no convergence rates. Optimal error estimates in the energy norms

for the fully discrete schemes of coupled Cahn-Hilliard-fluid-flow systems are lacking

in the literature. Furthermore, second order (in time) schemes are less commonly

investigated due to the additional challenges these schemes present. However, we do

note the recent works [4, 8, 14, 15, 26, 57, 55, 65].

The work presented in this dissertation is unique in the following sense. We are

able to prove unconditional unique solvability, unconditional energy stability, and

optimal error estimates for both a first order (in time) fully discrete finite element

scheme in three dimensions for a modified Cahn-Hilliard-Darcy-Stokes system and a

second order (in time) fully discrete finite element scheme in three dimensions for the

Cahn-Hilliard equation. Specifically, the stability and solvability statements we prove

are completely unconditional with respect to the time and space step sizes. In fact,

all of our a priori stability estimates hold completely independently of the time and

space step sizes. We use a bootstrapping technique to leverage the energy stabilities
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to achieve unconditional L∞(0, T ;L∞(Ω)) stability for the phase field variable φh and

unconditional L∞(0, T ;L2(Ω)) stability for the chemical potential µh. Obtaining these

stabilities unlocks a convergence analysis where we are able to prove optimal error

estimates for the phase field variable φh and chemical potential µh in the appropriate

energy norms.

The remainder of this dissertation proceeds as follows. In Chapter 2, we define

our notation and introduce several useful definitions, lemmas, and theorems. In

Chapter 3, we provide solvability, stability, and error analyses for a first order mixed

finite element scheme for the modified Cahn-Hilliard-Darcy-Stokes system (1.4a)–

(1.4f). The chapter begins with a weak formulation of the system to be analyzed and

presents the state-of-the art on numerical schemes for coupled Cahn-Hilliard fluid

flow problems. We then introduce the mixed finite element scheme. Once the scheme

is defined, a detailed analysis for unique solvability and unconditional stability is

presented. The chapter continues with an error analysis which demonstrates that

the mixed finite element scheme converges optimally in the appropriate energy norm

with certain regularity assumptions on weak solutions of the Cahn-Hilliard-Darcy-

Stokes equation (1.4a)–(1.4f). To conclude the chapter, we show the results of some

numerical experiments which confirm the results of the analyses presented. Chapter 4

mimics the structure of Chapter 3 for the second-order-accurate-in-time, fully discrete,

mixed finite element scheme for the Cahn-Hilliard problem (1.2a)–(1.2c). Finally, in

Chapter 5 we present plans for future research.
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Chapter 2

Mathematical Preliminaries

This dissertation employs standard and non-standard mathematical notation. That

notation which will be used frequently throughout the dissertation is defined here.

2.1 Notation

Let Ω ⊂ Rd, d = 2, 3, be an open polygonal or polyhedral domain and assume this

to be true for the remainder of the dissertation. We use the standard notation for

Lebesgue measurable functions, Lp(Ω) := {u : ‖u‖Lp <∞} where

‖u‖Lp :=

(∫
Ω

|u(x)|pdx
) 1

p

for 1 ≤ p <∞ and ‖u‖L∞ := ess sup {|u(x)| : x ∈ Ω}.

The notation (·, ·) will be used to denote the standard L2-inner product defined

for all u, v ∈ L2(Ω) as

(u, v) :=

∫
Ω

uv dx.
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Additionally, this dissertation employs the frequent use of three non-standard inner

products prefaced by a, b, and c:

a (u, v) := (∇u,∇v) , b (ψ,v, ν) := (∇ψ · v, ν) , and c (v, q) := (∇ · v, q) . (2.1)

A bold-faced font is used to denote a vector or vector valued function, v ∈ Rn. The

symbol ∇ψ is standard notation representing the gradient of the function ψ and ∇·ψ

is standard notation representing the divergence of the function ψ.

Using the notion of a weak derivative, the Sobolev space, W k,p, defined as

W k,p := {u : Dαu ∈ Lp(Ω),∀0 ≤ |α| ≤ k},

has norm

‖u‖Wk,p =

 ∑
0≤|α|≤k

‖Dαu‖pLp


1
p

,

for any non-negative integer k. We furthermore adopt the notations Hk = W k,2, H1
0

for H1 functions which are zero on the boundary, ∂Ω, and H1
0(Ω) := [H1

0 (Ω)]
d

as

the vector valued space with dimension d of H1 functions which are zero on ∂Ω. We

define a non-standard notation H−1(Ω) := (H1(Ω))
∗

to represent the dual space of

H1(Ω) and H−1(Ω) := (H1
0(Ω))

∗
to represent the dual space of H1

0(Ω). A duality

paring between H−1(Ω) and H1(Ω) in the first instance and a duality paring between

H−1(Ω) and (H1
0(Ω))

∗
in the second is denoted by 〈 · , · 〉. Additional spaces which
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will be used throughout this dissertation are defined as follows:

H2
N(Ω) := {v ∈ H2(Ω)|∂nv = 0 on ∂Ω}; (2.2)

L2
0(Ω) := {v ∈ L2(Ω)| (v, 1) = 0}; (2.3)

H̊1(Ω) := H1(Ω) ∩ L2
0(Ω); (2.4)

H̊−1(Ω) :=
{
v ∈ H−1(Ω)

∣∣ 〈v, 1〉 = 0
}

; (2.5)

V := {v ∈ H1
0(Ω)| (∇ · v, q) = 0,∀q ∈ L2

0(Ω)}. (2.6)

Furthermore, we note that the notation Φ(t) := Φ( · , t) ∈ X views a spatiotempo-

ral function as a map from the time interval [0, T ] into an appropriate Banach space,

X. Therefore, the Lebesgue space Lp(0, T ;X) consists of all those functions Φ(t) that

take values in X for almost every t ∈ [0, T ], such that the Lp([0, T ]) norm of ‖Φ(t)‖X
is finite.

In order to define the finite element spaces, let M be a positive integer and 0 =

t0 < t1 < · · · < tM = T be a uniform partition of [0, T ], with τ = ti − ti−1, i =

1, . . . ,M . Suppose Th = {K} is a conforming, shape-regular, quasi-uniform family

of triangulations of Ω. With r representing a positive integer, we define the sets

Mh
r and Mh

r,0 such that Mh
r := {v ∈ C0(Ω) | v|K ∈ Pr(K), ∀ K ∈ Th} ⊂ H1(Ω) and

Mh
r,0 := Mh

r ∩ H1
0 (Ω). Then, for a given positive integer q, we define the following

finite element spaces:

Sh :=Mh
q ; (2.7)

S̊h := Sh ∩ L2
0(Ω); (2.8)

Xh :=
{

v ∈
[
C0(Ω)

]d ∣∣∣ vi ∈Mh
q+1,0, i = 1, . . . , d

}
; (2.9)

Vh :=
{

v ∈ Xh

∣∣∣ (∇ · v, w) = 0,∀ w ∈ S̊h
}
. (2.10)

Note that Vh 6⊂ V, in general.
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2.2 Definitions, Lemmas, and Theorems

In this section, we list several definitions, lemmas, and theorems which will be useful

throughout this dissertation. Most of the lemmas and theorems listed below are

commonly found in mathematical literature and are therefore presented without proof.

Those which are not commonly found are either supported with proof or referenced.

Lemma 2.2.1. Young’s Inequality: If a, b ≥ 0 and 1 < p, q <∞ with 1
p

+ 1
q

= 1,

then

ab ≤ εap + C(ε)bq, (2.11)

where C(ε) = (εp)−
q
p q−1.

Lemma 2.2.2. Hölder’s Inequality: Let 1 ≤ p, q ≤ ∞ with 1
p

+ 1
q

= 1 and suppose

that f ∈ Lp(Ω) and g ∈ Lq(Ω). Then fg ∈ L1(Ω) with

∫
|fg|dx = ‖fg‖L1 ≤ ‖f‖Lp ‖g‖Lq . (2.12)

Lemma 2.2.3. Poincarè’s Inequality: Suppose 1 ≤ p ≤ ∞ and that Ω ⊂ Rn is

bounded, connected, and open with a Lipshitz boundary. Then there exists a constant

C, depending only on Ω and p, such that for every function u in the Sobolev space

W 1,p(Ω),

‖u− u‖Lp ≤ C ‖∇u‖Lp , (2.13)

where

u =
1

|Ω|

∫
Ω

u(x)dx

is the average value of u over Ω, with |Ω| standing for the Lesbegue measure of the

domain Ω.
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Theorem 2.2.4. Riesz Representation Theorem. Any continuous linear

functional L on a Hilbert space H can be represented uniquely as

L(v) = (u, v) (2.14)

for some u ∈ H. Furthermore, we have

‖L‖H′ = ‖u‖H (2.15)

where ‖L‖H′ = sup
06=v∈H

|L(v)|
‖v‖H

.

Remark 2.2.5. It is important to note that the notation 〈ρ, v〉 may additionally be

interpreted as the action of the linear functional ρ on the test function v.

Definition 2.2.6. The Linear Operator T: The linear operator T : H̊−1(Ω) →

H̊1(Ω) is defined via the following variational problem: given ζ ∈ H̊−1(Ω), find T(ζ) ∈

H̊1(Ω) such that

a (T(ζ), χ) = 〈ζ, χ〉 ∀χ ∈ H̊1(Ω). (2.16)

Remark 2.2.7. The operator T is well-defined, as is guaranteed by the Riesz

Representation Theorem.

Lemma 2.2.8. Let ζ, ξ ∈ H̊−1(Ω) and, for such functions, set

(ζ, ξ)H−1 := a (T(ζ),T(ξ)) = (ζ,T(ξ)) = (T(ζ), ξ) . (2.17)

( · , · )H−1 defines an inner product on H̊−1(Ω), and the induced norm is equal to the

operator norm:

‖ζ‖H−1 :=
√

(ζ, ζ)H−1 = sup
06=χ∈H1

|〈ζ, χ〉|
‖∇χ‖L2

. (2.18)

Consequently, for all χ ∈ H1(Ω) and all ζ ∈ H̊−1(Ω),

|〈ζ, χ〉| ≤ ‖ζ‖H−1 ‖∇χ‖L2 . (2.19)
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Furthermore, for all ζ ∈ L2
0(Ω), we have the Poincaré type inequality

‖ζ‖H−1 ≤ C ‖ζ‖L2 , (2.20)

where C > 0 is the usual Poincaré constant.

Proof. We begin by showing ( · , · )H−1 defines an inner product on H̊−1(Ω). Let

ζ, ψ, ξ ∈ H̊−1(Ω) with λ, µ ∈ R. By definition (2.17),

(λζ + µψ, ξ)H−1 = (λζ + µψ,T(ξ)) = λ (ζ,T(ξ)) + µ (ψ,T(ξ))

= λ (ζ, ξ)H−1 + µ (ψ, ξ)H−1 ,

(ζ, ξ)H−1 = a (T(ζ),T(ξ)) = a (T(ξ),T(ζ)) = (ξ, ζ)H−1 ,

(ζ, ζ)H−1 = a (T(ζ),T(ζ)) ≥ 0

with equality if and only if ζ = 0. The equivalence of the induced norm and the

operator norm follows from the definition of the inner product and the Cauchy

Schwartz inequality,

√
(ζ, ζ)H−1 = ‖∇T(ζ)‖L2 =

a (T(ζ),T(ζ))

‖∇T(ζ)‖L2

=
|〈ζ,T(ζ)〉|
‖∇T(ζ)‖L2

≤ sup
06=χ∈H1

|〈ζ, χ〉|
‖∇χ‖L2

= sup
06=χ∈H1

|a (T(ζ), χ) |
‖∇χ‖L2

≤ sup
06=χ∈H1

‖∇T(ζ)‖L2 ‖∇χ‖L2

‖∇χ‖L2

= ‖∇T(ζ)‖L2 =
√

(ζ, ζ)H−1 .

Inequality (2.19) easily follows from the definition of the operator norm,

‖ζ‖H−1 = sup
06=χ∈H1

|〈ζ, χ〉|
‖∇χ‖L2

≥ |〈ζ, χ〉|
‖∇χ‖L2

.

Finally, we use definitions (2.17) and (2.18) and the Poicarè inequality to obtain

‖ζ‖2
H−1 = (T(ζ), ζ) ≤ ‖T(ζ)‖L2 ‖ζ‖L2 ≤ C ‖∇T(ζ)‖L2 ‖ζ‖L2 = C ‖ζ‖H−1 ‖ζ‖L2
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where C > 0 is the usual Poincaré constant.

Lemma 2.2.9. Elliptic Regularity [5]: Let Ω be bounded. Then,

‖u‖W 2,p ≤ ‖∆u‖Lp , 1 < p < µ,

where µ depends on the smoothness of ∂Ω.

Definition 2.2.10. The Ritz Projection: The operator Rh : H1(Ω) → Sh is the

referred to as the Ritz projection for the Neumann problem and is defined by:

a (Rhφ− φ, χ) = 0, ∀χ ∈ Sh, (2.21)

with

(Rhφ− φ, 1) = 0.

Theorem 2.2.11. An Approximation Theorem [5]: Suppose we have a family

of subspaces Sh ⊂ Hm(Ω) with the property that, for all φ ∈ Hk(Ω) and 0 < h ≤ 1,

inf
χ∈Sh

‖φ− χ‖Hm ≤ Chk−m ‖φ‖Hk . (2.22)

and let s < m and m ≤ r ≤ k. Then there is a constant C such that

inf
χ∈Sh

(hs ‖φ− χ‖Hs + hm ‖φ− χ‖Hm) ≤ Chr ‖φ‖Hr

provided φ ∈ Hr(Ω).

Remark 2.2.12. The construction of the finite element spaces used throughout this

dissertation satisfy assumption (2.22) in Theorem 2.2.11.

Theorem 2.2.13. Ritz Projection Error [5, 59]: The Ritz Projection for the

Neumann problem satisfies the following for any φ ∈ Hq(Ω),

‖φ−Rhφ‖L2 + h ‖∇(φ−Rhφ)‖L2 ≤ Chq ‖φ‖Hq .
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Proof. We follow the proofs provided in both [5] and [59]. We start with the estimate

for the error in the gradient. By the error estimate above,

‖∇(Rhφ− φ)‖2
L2 ≤ inf

χ∈Sh

‖∇(φ− χ)‖2
L2 ≤ Chq−1 ‖φ‖Hq .

For the error bound in the L2-norm, we use a duality argument. Let ξ ∈ L2(Ω) be

arbitrary and take ψ ∈ H2(Ω) as the solution of

−∆ψ = ξ in Ω, with ∂nψ = 0 on ∂Ω.

Then for Rhψ ∈ Sh, we have

(Rhφ− φ, ξ) = − (Rhφ− φ,∆ψ)

= (∇(Rhφ− φ),∇ψ)

= (∇(Rhφ− φ),∇(ψ −Rhψ))

≤ ‖∇(Rhφ− φ)‖L2 ‖∇(ψ −Rhψ)‖L2 ,

where we have used the definition of the Ritz projection for the Neumann problem

and the Cauchy-Schwarz inequality. Hence, using elliptic regularity and assumption

(2.22),

(Rhφ− φ, ξ) ≤ Chq−1 ‖φ‖Hq Ch ‖ψ‖H2 ≤ Chq ‖φ‖Hq ‖∆ψ‖L2 ≤ Chq ‖φ‖Hq ‖ξ‖L2 .

Choose ξ = Rhφ− φ to conclude the proof.

Definition 2.2.14. The Darcy-Stokes Projection: The operator (Ph, Ph) : V ×

L2
0 → Vh × S̊h is referred to as the Darcy-Stokes projection and is defined by:

λ a (Phu− u,v) + η (Phu− u,v)− c (v, Php− p) = 0, ∀v ∈ Xh, (2.23)

c (Phu− u, q) = 0, ∀ q ∈ S̊h. (2.24)
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Theorem 2.2.15. Darcy-Stokes Projection Error [5]: The Darcy-Stokes Projec-

tion above satisfies

‖Phu− u‖H1 + ‖Php− p‖L2 ≤ Chq (|u|Hq+1 + |p|Hq) ,

for any u ∈ Hq+1(Ω) and p ∈ Hq(Ω).

Definition 2.2.16. The Discrete Laplacian: We define the discrete Laplacian,

∆h : Sh → S̊h, as follows: for any vh ∈ Sh, ∆hvh ∈ S̊h denotes the unique solution to

the problem

(∆hvh, χ) = −a (vh, χ) , ∀ χ ∈ Sh. (2.25)

In particular, setting χ = ∆hvh in (2.25), we obtain

‖∆hvh‖2
L2 = −a (vh,∆hvh) .

Theorem 2.2.17. A Local Inverse Inequality [5]: Let (K,P ,N ) be a reference

finite element such that ρh ≤ diam K ≤ h and P is a finite-dimensional subspace

of W l,p(K)
⋂
Wm,q(K), where 1 ≤ p, q ≤ ∞ and 0 ≤ m ≤ l. Then there exists

C = C(P̂ , K̂, l, p, q, ρ) such that for all v ∈ P, we have

‖v‖W l,p(K) ≤ Chm−l+n/p−n/q ‖v‖Wm,q(K) ,

where (K̂, P̂ , N̂ ) is the affine-equivalent finite element to the reference finite-element.

Lemma 2.2.18. An Inverse Inequality [5]: Let {Th}, 0 < h ≤ 1 be a conforming,

quasi-uniform triangulation of a polygonal or polyhedral domain Ω ⊂ Rn. Let

(K,P ,N ) be a reference finite element such that ρh ≤ diam K ≤ h and P is a finite-

dimensional subspace of W l,p(K)
⋂
Wm,q(K), where 1 ≤ p, q ≤ ∞ and 0 ≤ m ≤ l.

Then there exists C = C(l, p, q, ρ) such that for all v ∈ Sh, we have

‖v‖W l,p(Ω) ≤ Chm−l+min(0,n/p−n/q) ‖v‖Wm,q(Ω) .

18



Definition 2.2.19. The Linear Operator Th: The invertible linear operator Th :

S̊h → S̊h is defined via the variational problem: given ζ ∈ S̊h, find Th(ζ) ∈ S̊h such

that

a (Th(ζ), χ) = (ζ, χ) ∀χ ∈ S̊h. (2.26)

Remark 2.2.20. The variational problem used to define the linear operator Th clearly

has a unique solution because a ( · , · ) is an inner product on S̊h.

Lemma 2.2.21. Let ζ, ξ ∈ S̊h and set

(ζ, ξ)−1,h := a (Th(ζ),Th(ξ)) = (ζ,Th(ξ)) = (Th(ζ), ξ) . (2.27)

( · , · )−1,h defines an inner product on S̊h, and the induced negative norm satisfies

‖ζ‖−1,h :=
√

(ζ, ζ)−1,h = sup
06=χ∈Sh

(ζ, χ)

‖∇χ‖L2

. (2.28)

Consequently, for all χ ∈ Sh and all ζ ∈ S̊h,

|(ζ, χ)| ≤ ‖ζ‖−1,h ‖∇χ‖L2 . (2.29)

The following Poincaré-type estimate holds:

‖ζ‖−1,h ≤ C ‖ζ‖L2 , ∀ ζ ∈ S̊h, (2.30)

for some C > 0 that is independent of h. Finally, if Th is globally quasi-uniform, then

the following inverse estimate holds:

‖ζ‖L2 ≤ Ch−1 ‖ζ‖−1,h , ∀ ζ ∈ S̊h, (2.31)

for some C > 0 that is independent of h.
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Proof. The proof follows similarly to Lemma 2.2.8 with the inverse inequality

remaining. Set χ = ζ in (2.29). Then by the inverse inequality (2.2.18), we have

‖ζ‖2
L2 ≤ ‖ζ‖−1,h ‖∇ζ‖L2 ≤ Ch−1 ‖ζ‖−1,h ‖ζ‖L2 .

Lemma 2.2.22. Suppose g ∈ H1(Ω), and v ∈ S̊h. Then

|(g, v)| ≤ C ‖∇g‖L2 ‖v‖−1,h , (2.32)

for some C > 0 that is independent of h.

Proof. If g ∈ Sh, we can apply Lemma 2.2.21 directly. Otherwise, using the triangle

inequality, the Cauchy-Schwarz inequality, and Lemma 2.2.21,

|(g, v)| ≤ |(g −Rhg, v)|+ |(Rhg, v)| ≤ ‖g −Rhg‖L2 ‖v‖L2 + ‖∇Rhg‖L2 ‖v‖−1,h .

(2.33)

Using the Ritz projection estimate,

‖g −Rhg‖L2 ≤ C ‖∇(g −Rhg)‖L2 ≤ Ch ‖∇g‖L2 , (2.34)

we have

|(g, v)| ≤ Ch ‖∇g‖L2 ‖v‖L2 + ‖∇Rhg‖L2 ‖v‖−1,h . (2.35)

Finally, using the (uniform) inverse estimate h ‖v‖L2 ≤ C ‖v‖−1,h from Lemma 2.2.21,

and the stability of the elliptic projection, ‖∇Rhg‖L2 ≤ C ‖∇g‖L2 , we have the

result.

Theorem 2.2.23. The Sobolev Embedding Theorem [2]: Let Ω ⊂ Rn be an

n-dimensional bounded Lipschitz domain, let m ≥ 1 be an integer, and let p be a real

number in the range 1 ≤ p <∞.
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Case 1. If either mp > n or m = n and p = 1, then for n ≥ 1

Wm,p(Ω) ↪→ Lq(Ω) for p ≤ q <∞.

Case 2. If n ≥ 1 and mp = n, then

Wm,p(Ω) ↪→ Lq(Ω) for p ≤ q <∞.

Case 3. If mp < n and either n−mp ≤ n or p = 1 and n−m < n, then

Wm,p(Ω) ↪→ Lq(Ω) for p ≤ q ≤ np

n−mp
.

The embedding constants for the embeddings above depend only on n,m, p, q and the

dimensions of the Lipschitz condition on the domain.

Lemma 2.2.24. Gagliardo-Nirenberg Interpolation Inequality [50, 9]: Let

Ω ⊂ Rd be a bounded, connected, open set with Lipschitz boundary, 1 ≤ q, r ≤ ∞,
j
m
≤ θ ≤ 1 and

1

p
− j

d
=

(
1

r
− m

d

)
θ +

1− θ
q

.

Suppose that u ∈ LqΩ with ∂αu ∈ Lr(Ω) for all |α| = m. Then ∂βu ∈ Lp(Ω) for all

|β| = j, and there exists a constant C = C(d, j,m, p, q, r,Ω) > 0 such that

|u|W j,p ≤ C
(
|u|θW j,r ‖u‖1−θ

Lq + ‖u‖Lq

)
.

Lemma 2.2.25. Discrete Gagliardo-Nirenberg Inequality [9, 63]: Suppose Th
is a conforming mesh (no hanging nodes) that is globally quasi-uniform and Ω is a

convex polygonal domain. For all u ∈ Sh, there is a constant C > 0 such that for

d = 2, 3,

‖uh‖L∞ ≤ C ‖∆huh‖
d

2(6−d)

L2 ‖uh‖
3(4−d)
2(6−d)

L6 + C ‖uh‖L6 , (2.36)
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where ∆h is the discrete Laplacian defined in 2.2.16.

Proof. Let Ih : H2(Ω) → Sh denote the C0(Ω) nodal interpolation operator. From

Brenner and Scott [5] for any u ∈ H2(Ω),

‖u− Ihu‖L∞ ≤ Ch2− d
2 |u|H2(Ω), (2.37)

for some constant C > 0. Then, by approximation properties, the inverse inequality

2.2.18, and elliptic regularity, we have

‖u− uh‖L6 ≤ ‖uh − Ihu‖L6 + ‖Ihu− u‖L6

≤ Ch−
d
3 ‖uh − Ihu‖L2 + Ch

d
6 ‖Ihu− u‖L∞

≤ Ch−
d
3 ‖uh − Ihu‖L2 + Ch2− d

3 |u|H2(Ω)

≤ Ch−
d
3 ‖uh − u‖L2 + Ch−

d
3 ‖u− Ihu‖L2 + Ch2− d

3 |u|H2(Ω)

≤ Ch2− d
3 |u|H2(Ω) ≤ Ch2− d

3 ‖∆u‖L2 = Ch2− d
3 ‖∆hu‖L2 .

Using the triangle inequality,

‖u‖L6 ≤ ‖uh‖L6 + Ch2− d
3 ‖∆hu‖L2 . (2.38)

Note from [5], we have the inverse inequality

‖∇uh‖L2 ≤ Ch−1+ d
3 ‖uh‖L6 . (2.39)

Hence, it follows that

‖∆hu‖L2 ≤ Ch−2+ d
3 ‖uh‖L6 . (2.40)
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Now, using the Gagliordo-Nirenberg inequality 2.2.24, elliptic regularity, and repeat-

edly using inverse inequalities and the approximation properties above,

‖uh‖L∞ ≤ ‖uh − Ihu‖L∞ + ‖Ihu− u‖L∞ + ‖u‖L∞

≤ Ch−
d
2 ‖uh − Ihu‖L2 + Ch2− d

2 |u|H2 + ‖u‖L∞

≤ Ch−
d
2 ‖uh − u‖L2 + Ch−

d
2 ‖u− Ihu‖L2 + Ch2− d

2 ‖∆u‖L2 + ‖u‖L∞

≤ Ch2− d
2 ‖∆u‖L2 + ‖u‖L∞

≤ Ch2− d
2 ‖∆u‖L2 + ‖u‖

3(4−d)
2(6−d)

L6 ‖∆u‖
d

2(6−d)

L2 + C ‖u‖L6

= Ch2− d
2 ‖∆hu‖L2 + ‖u‖

3(4−d)
2(6−d)

L6 ‖∆hu‖
d

2(6−d)

L2 + C ‖u‖L6

≤ Ch2− d
2 ‖∆hu‖L2 + C

(
‖uh‖L6 + Ch2− d

3 ‖∆huh‖L2

) 3(4−d)
2(6−d) ‖∆hu‖

d
2(6−d)

L2

+ C ‖uh‖L6 + Ch2− d
3 ‖∆huh‖L2

≤ Ch2− d
2 ‖∆hu‖L2 + C

(
‖uh‖

3(4−d)
2(6−d)

L6 + Ch2− d
2 ‖∆huh‖

3(4−d)
2(6−d)

L2

)
‖∆hu‖

d
2(6−d)

L2

+ C ‖uh‖L6

≤ Ch2− d
2 ‖∆hu‖L2 + C ‖uh‖

3(4−d)
2(6−d)

L6 ‖∆hu‖
d

2(6−d)

L2 + C ‖uh‖L6

= Ch2− d
2 ‖∆hu‖

3(4−d)
2(6−d)

L2 ‖∆hu‖
d

2(6−d)

L2 + C ‖uh‖
3(4−d)
2(6−d)

L6 ‖∆hu‖
d

2(6−d)

L2 + C ‖uh‖L6

≤ Ch2− d
2

(
h−2+ d

3 ‖uh‖L6

) 3(4−d)
2(6−d) ‖∆hu‖

d
2(6−d)

L2 + C ‖uh‖
3(4−d)
2(6−d)

L6 ‖∆hu‖
d

2(6−d)

L2

+ C ‖uh‖L6

≤ C ‖uh‖
3(4−d)
2(6−d)

L6 ‖∆hu‖
d

2(6−d)

L2 + C ‖uh‖L6 .
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Lemma 2.2.26. The Discrete Gronwall Inequality [35, 43]: Fix T > 0,

and suppose {am}Mm=1, {bm}Mm=1 and {cm}M−1
m=1 are non-negative sequences such that

τ
∑M−1

m=1 c
m ≤ C1, where C1 is independent of τ and M , and Mτ = T . Suppose that,

for all τ > 0,

aM + τ
M∑
m=1

bm ≤ C2 + τ
M−1∑
m=1

amcm, (2.41)

where C2 > 0 is a constant independent of τ and M . Then, for all τ > 0,

aM + τ

M∑
m=1

bm ≤ C2 exp

(
τ
M−1∑
m=1

cm

)
≤ C2 exp(C1). (2.42)

Note that the sum on the right-hand-side of (2.41) must be explicit.

Theorem 2.2.27. Taylor’s Theorem. If f ∈ Cn+1([a, b]), then for any points

x, x0 ∈ [a, b],

f(x) =
n∑
k=0

1

k!
fk(x0) · (x− x0)k +Rn(x), (2.43)

where

Rn(x) =
1

n!

∫ x

x0

fn+1(s)(x− s)nds. (2.44)
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Chapter 3

The Numerical Analysis of a

First-Order Convex Splitting

Scheme for the

Cahn-Hilliard-Darcy-Stokes

System

Chapter 3 is devoted to the development and analysis of a first order in time convex

splitting numerical scheme for the Cahn-Hilliard-Darcy-Stokes problem. We will

begin by setting up a weak formulation of the problem (1.4a) – (1.4f) and presenting

the recent developments on numerical schemes related to this problem. We then

introduce our new mixed methods numerical scheme and prove that the scheme is

uniquely solvable. We furthermore show that the scheme is unconditionally stable

and optimally convergent and back up these findings with the results from a few

numerical experiments.
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3.1 A Weak Formulation of the Cahn-Hilliard-

Darcy-Stokes System

A weak formulation of (1.4a) – (1.4f) may be written as follows: find (φ, µ, ξ,u, p)

such that

φ ∈ L∞
(
0, T ;H1(Ω)

)
∩ L4 (0, T ;L∞(Ω)) , (3.1a)

∂tφ ∈ L2
(
0, T ;H−1(Ω)

)
, (3.1b)

µ ∈ L2
(
0, T ;H1(Ω)

)
, (3.1c)

u ∈ L2
(
0, T ; H1

0(Ω)
)
∩ L∞

(
0, T ; L2(Ω)

)
, (3.1d)

∂tu ∈ L2
(
0, T ; H−1(Ω)

)
, (3.1e)

p ∈ L2
(
0, T ;L2

0(Ω)
)
, (3.1f)

and there hold for almost all t ∈ (0, T )

〈∂tφ, ν〉+ ε a (µ, ν) + b (φ,u, ν) = 0 ∀ ν ∈ H1(Ω), (3.2a)

(µ, ψ)− ε a (φ, ψ)− ε−1
(
φ3 − φ, ψ

)
− (ξ, ψ) = 0 ∀ψ ∈ H1(Ω), (3.2b)

a (ξ, ζ)− θ
(
φ− φ0, ζ

)
= 0 ∀ ζ ∈ H1(Ω), (3.2c)

ω 〈∂tu,v〉+ λ a (u,v) + η (u,v)− c (v, p)− γ b (φ,v, µ) = 0 ∀v ∈ H1
0(Ω), (3.2d)

c (u, q) = 0 ∀ q ∈ L2
0(Ω), (3.2e)

with the “compatible” initial data

φ(0) = φ0 ∈ H2
N(Ω), u(0) = u0 ∈ V. (3.3)

The system (3.2a) – (3.2e) is mass conservative: for almost every t ∈ [0, T ],

(φ(t)− φ0, 1) = 0. This observation rests on the fact that b(φ,u, 1) = 0, for all

φ ∈ L2(Ω) and all u ∈ V. Observe that the homogeneous Neumann boundary
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conditions associated with the phase variables φ, µ, and ξ are natural in this mixed

weak formulation of the problem. The existence of weak solutions is a straightforward

exercise using the compactness/energy method. See, for example, [24]. Furthermore,

in [9], it was shown that global-in-time strong solutions exist for a Cahn-Hilliard-

Stokes equation similar to the problem (1.4a)–(1.4f), with sufficiently smooth initial

data.

Now consider the energy

E(u, φ) =
ω

2γ
‖u‖2

L2 +
1

4ε

∥∥φ2 − 1
∥∥2

L2 +
ε

2
‖∇φ‖2

L2 +
θ

2

∥∥φ− φ0

∥∥2

H−1

=
ω

2γ
‖u‖2

L2 +
1

4ε
‖φ‖4

L4 −
1

2ε
‖φ‖2

L2 +
|Ω|
4ε

+
ε

2
‖∇φ‖2

L2 +
θ

2

∥∥φ− φ0

∥∥2

H−1 ,

(3.4)

which is defined for all u ∈ L2(Ω) and φ ∈ A :=
{
φ ∈ H1(Ω)

∣∣ (φ− φ0, 1
)

= 0
}

.

Clearly, if θ ≥ 0, then E(u, φ) ≥ 0 for all u ∈ L2(Ω) and φ ∈ A. For arbitrary θ ∈ R,

ε > 0, u ∈ L2(Ω), and φ ∈ A, there exist positive constants M1 = M1(ε, θ) and

M2 = M2(ε, θ) such that

0 < M1

(
‖u‖2

L2 + ‖φ‖2
H1

)
≤ E(u, φ) +M2. (3.5)

It is straightforward to show that weak solutions of (3.2a) – (3.2e) dissipate the energy

(3.4). In other words, (1.4a) – (1.4f) is a conserved gradient flow with respect to the

energy (3.4). Precisely, for any t ∈ [0, T ], we have the energy law

E(u(t), φ(t)) +

∫ t

0

(
λ

γ
‖∇u(s)‖2

L2 +
η

γ
‖u(s)‖2

L2 + ε ‖∇µ(s)‖2
L2

)
ds = E(u0, φ0).

(3.6)

Formally, one can also easily demonstrate that µ in (1.4b) is the variational derivative

of E with respect to φ. In symbols, µ = δφE. In Section 3.3, we present a numerical

scheme which follows a similar energy law making rigorous mathematical proofs for

unconditional unique solvability and unconditional energy stability possible.
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3.2 The State-of-the-Art on Numerical Schemes

for Coupled Cahn-Hilliard-Fluid-Flow

Equations

Galerkin numerical methods for the Cahn-Hilliard-Navier-Stokes (CHNS ) and the

Allen-Cahn-Navier-Stokes equations have been investigated in the recent papers [1,

21, 22, 24, 38, 40, 29, 30, 57, 56]. The rigorous analyses of numerical schemes – mostly

for the matched-density CHNS system – can be found in [21, 22, 24, 38, 40, 29, 57, 56].

Specifically, there have been convergence proofs for these schemes, but all of these

analyses focus on two types of limited convergence results: (i) error estimates and

convergence rates for the semi-discrete setting (time continuous) [22, 38] and/or (ii)

abstract convergence results with no convergence rates [22, 24, 29, 38]. Optimal error

estimates in the energy norms for the fully discrete schemes of CHNS-type systems

are lacking in the literature.

Kay et al. develop both a semi-discrete and a fully discrete mixed finite element

method for the Cahn-Hilliard-Navier-Stokes system of equations. For the semi-

discrete model, they were able to show unconditional stabilities resulting from the

discrete energy law. For the fully discrete model, they use a first order implicit-

explicit Euler method to discretize time and were able to show conditional energy

stability, with a restriction on the time step. They were able to obtain optimal error

(convergence) rates for the semi-discrete model, but only an abstract convergence

for the fully discrete model. In [29], Grün proves the abstract convergence of

a fully discrete finite element scheme for a diffuse interface model for two-phase

flow of incompressible, viscous fluids with different mass densities. No convergence

rates were presented in his paper. Feng [21] presented a fully discrete mixed finite

element method for the Cahn-Hilliard-Navier-Stokes system of equations. The time

discretization used is a first order implicit Euler with the exception of a stabilization

term which is treated explicitly. Conditional stability for the basic energy law is
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developed along with abstract convergence of the finite element model to the PDE

model. However, no additional stability estimates are presented beyond the estimates

achieved from the energy law. Additionally, Feng et al. [22] develop both a semi-

discrete and fully discrete finite element method model for the Non-steady-Stokes-

Allen-Cahn system of equations. For both the semi-discrete and fully discrete models,

conditional energy stability is developed. Optimal error estimates are obtained for

the semi-discrete scheme (time-continuous) while abstract convergence is proven for

the fully discrete model.

In the case that u ≡ 0 – which occurs if γ = 0 – the model (1.4a)–(1.4f)

reduces to the modified Cahn-Hillard equation [11, 10] which was analyzed by

Aristotelous et al. [3]. Their scheme was comprised of a convex splitting method

for time discretization and a discontinuous galerkin finite element method for

space discretization. They showed that their mixed, fully discrete scheme was

unconditionally energy stable, unconditionally uniquely solvable, and optimally

convergent in the energy norm in two-dimensions. Finally, Collins et al. [12] used

a convex splitting method in time and a finite difference method in space to devise

an energy stable method for a system similar to (1.2a)–(1.2c), though they did not

prove convergence or error estimates.

The work presented in Chapter 3 on the modified Cahn-Hilliard-Darcy-Stokes

system is unique in the following sense. We are able to prove unconditional unique

solvability, unconditional energy stability, and optimal error estimates for a fully

discrete finite element scheme in three dimensions. Specifically, the stability and

solvability statements we prove are completely unconditional with respect to the time

and space step sizes. The phase field parameter φh is bounded unconditionally (with

respect to the time and space step sizes, τ and h) in L∞(0, T ;L∞(Ω)) and the chemical

potential µh is bounded unconditionally in L∞(0, T ;L2(Ω)). With these stabilities in

hand we are able to prove optimal error estimates for φh and µh in the appropriate

energy norms.

29



3.3 A Mixed Finite Element Convex Splitting

Scheme

3.3.1 Definition of the Scheme

Considering the finite element spaces defined in Chapter 2, our mixed convex splitting

scheme is defined as follows: for any 1 ≤ m ≤M , given φm−1
h ∈ Sh, um−1

h ∈ Xh, find

φmh , µ
m
h ∈ Sh, ξmh , pmh ∈ S̊h, and umh ∈ Xh, such that

(δτφ
m
h , ν) + ε a (µmh , ν) + b

(
φm−1
h ,umh , ν

)
= 0 ∀ ν ∈ Sh, (3.7a)

ε−1
(
(φmh )3 − φm−1

h , ψ
)

+ ε a (φmh , ψ)− (µmh , ψ) + (ξmh , ψ) = 0 ∀ψ ∈ Sh, (3.7b)

a (ξmh , ζ)− θ
(
φmh − φ0, ζ

)
= 0 ∀ ζ ∈ Sh, (3.7c)

(δτu
m
h ,v) + λ a (umh ,v) + η (umh ,v)− c (v, pmh )

−γ b
(
φm−1
h ,v, µmh

)
= 0 ∀v ∈ Xh, (3.7d)

c (umh , q) = 0 ∀ q ∈ S̊h, (3.7e)

where

δτφ
m
h :=

φmh − φm−1
h

τ
, φ0

h := Rhφ0, u0
h := Phu0. (3.8)

Remark 3.3.1. To shorten the presentation, we have set ω = 1 (appearing in (1.4d)).

With some slight modifications here and there, the singular limit case, ω = 0, can

be covered in the analysis that follows. In this setting, one loses the stability uh ∈

L∞(0, T ;L2(Ω)), but this is not crucial for us. For perspective, the analysis of Feng et

al. [22] requires uh ∈ L∞(0, T ;L2(Ω)).

Remark 3.3.2. Note that
(
φ0
h − φ0, 1

)
= 0, where φ0 is the initial mass average,

which in the typical case, satisfies |φ0| ≤ 1. We also point out that, appealing to

(3.7a) and (3.7e), we have
(
φmh − φ0, 1

)
= 0, for all m = 1, . . . ,M , which follows

because a (µ, 1) = 0, for all µ ∈ Sh, and b (φh,u, 1) = 0, for all φ ∈ Sh and all

u ∈ Vh.
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Remark 3.3.3. The elliptic projections are used in the initialization for simplicity in

the forthcoming analysis. We can use other (simpler) projections in the initialization

step, as long as they have good approximation properties.

Remark 3.3.4. Note that it is not necessary for solvability and some basic energy

stabilities that the µ–space and the φ–space be equal. However, the proofs of the

higher-order stability estimates, in particular those in Lemma 3.3.14, do require

the equivalence of these spaces. Mass conservation of the scheme requires some

compatibility of the p–space with that of the φ–space, to obtain b (φh,u, 1) = 0. For

the flow problem, we have chosen the inf-sup-stable Taylor-Hood element. One can

also use the simpler MINI element. Recall that the stability of the Taylor-Hood

element typically requires that the family of meshes Th has the property that no

tetrahedron/triangle in the mesh has more than one face/edge on the boundary [5].

In order to prove unique solvability, we define a scheme that is equivalent to (3.7a)

- (3.7e) above. For any 1 ≤ m ≤M , given ϕm−1
h ∈ Sh, um−1

h ∈ Xh, find ϕmh , µ
m
h ∈ Sh,

ξmh ∈ S̊h, um,0h ,um,1h ∈ Xh, p
m,0
h , pm,1h ∈ S̊h, such that

λ a
(
um,0h ,v

)
+

(
η +

1

τ

)(
um,0h ,v

)
− c

(
v, pm,0h

)
− 1

τ

(
um−1
h ,v

)
= 0 ∀v ∈ Xh,

(3.9a)

c
(
um,0h , q

)
= 0 ∀ q ∈ S̊h,

(3.9b)
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and (
ϕmh − ϕm−1

h,?

τ
, ν

)
+ ε a (µmh , ν) + b

(
ϕm−1
h ,um,1h , ν

)
= 0 ∀ ν ∈ Sh, (3.10a)

ε−1
((
ϕmh + φ0

)3 − ϕm−1
h − φ0, ψ

)
+ ε a (ϕmh , ψ)

− (µmh , ψ) + (ξmh , ψ) = 0 ∀ψ ∈ Sh, (3.10b)

a (ξmh , ζ)− θ (ϕmh , ζ) = 0 ∀ ζ ∈ Sh, (3.10c)

λ a
(
um,1h ,v

)
+

(
η +

1

τ

)(
um,1h ,v

)
− c

(
v, pm,1h

)
−γ b

(
ϕm−1
h ,v, µmh

)
= 0 ∀v ∈ Xh, (3.10d)

c
(
um,1h , q

)
= 0 ∀ q ∈ S̊h, (3.10e)

where

ϕm−1
h,? := ϕm−1

h − τQh
(
∇ϕm−1

h · um,0h

)
∈ Sh, (3.11)

and Qh : L2(Ω)→ Sh is the L2 projection, i.e., (Qhν − ν, χ) = 0, for all χ ∈ Sh. For

the initial data, we set

ϕ0
h := Rhφ0 − φ0, u0

h := Phu0. (3.12)

Hence, (ϕ0
h, 1) = 0. By setting ν ≡ 1 in (3.7a) and (3.10a) and observing that

a (ϕ, 1) = 0 for all ϕ ∈ Sh, one finds that, provided solutions for the two schemes

exist, they are related via

ϕmh +φ0 = φmh , ϕmh ∈ S̊h, umh = um,0h +um,1h ∈ Xh, pmh = pm,0h +pm,1h ∈ S̊h (3.13)

for all 1 ≤ m ≤ M . The variables µmh and ξmh are the same as before. Note that the

average mass of µmh will change with the time step m, i.e., (µmh , 1) 6=
(
µm−1
h , 1

)
, in

general.
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Remark 3.3.5. The utility of this new, equivalent formulation is that we can

straightforwardly show its unconditional unique solvability by convex optimization

methods. Our arguments require that the velocity um,1h is a linear function of µmh ,

as is the case in (3.10d). (See Lemma 3.3.6.) This was not the case in (3.7d), where

umh is an affine function of µmh .

3.3.2 Unconditional Solvability

In this subsection, we show that our schemes are unconditionally uniquely solvable.

We begin by building some machinery.

Lemma 3.3.6. Given ϕm−1
h ∈ S̊h define the bilinear form `mh : S̊h × S̊h → R via

`mh (µ, ν) := ε a (µ, ν) + b
(
ϕm−1
h ,u, ν

)
, (3.14)

where, for each fixed µ ∈ S̊h, u = u(µ) ∈ Xh and p = p(µ) ∈ S̊h solve

λ a (u,v) +

(
η +

1

τ

)
(u,v)− c (v, p)− γ b

(
ϕm−1
h ,v, µ

)
= 0 ∀v ∈ Xh, (3.15a)

c (u, q) = 0 ∀ q ∈ S̊h. (3.15b)

Then `mh ( · , · ) is a coercive, symmetric bilinear form, and therefore, an inner product

on S̊h.

Proof. The solvability and stability of the flow problem follows from the fact that(
Xh, S̊h

)
form a stable pair for the Darcy-Stokes problem. Now, let µi ∈ S̊h, i = 1, 2.

Set ui = u(µi) ∈ Xh and pi = p(µi) ∈ S̊h, i = 1, 2, with u and p defined in (3.15a)

and (3.15b) above. Then with α, β ∈ {1, 2},

λ a (uα,uβ) +

(
η +

1

τ

)
(uα,uβ)− c (uβ, pα)− γ b

(
ϕm−1
h ,uβ, µα

)
= 0, (3.16a)

c (uβ, pα) = 0, (3.16b)
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and setting α = 2, β = 1 in the last two equations, we have

`mh (µ1, µ2) = ε a (µ1, µ2) + b
(
ϕm−1
h ,u1, µ2

)
= ε a (µ1, µ2) +

λ

γ
a (u2,u1) +

η + 1
τ

γ
(u2,u1) . (3.17)

It is now clear that `mh ( · , · ) is a coercive, symmetric bilinear form on S̊h.

Owing to the last result, we can define an invertible linear operator Lh,m : S̊h → S̊h

via the following problem: given ζ ∈ S̊h, find µ ∈ S̊h such that

`mh (µ, ν) = − (ζ, ν) ∀ ν ∈ S̊h. (3.18)

This clearly has a unique solution because `mh ( · , · ) is an inner product on S̊h. We

write Lh,m(µ) = −ζ, or, equivalently, µ = −L−1
h,m(ζ).

We now wish to define another discrete negative norm.

Lemma 3.3.7. Let ζ, ξ ∈ S̊h and suppose µζ , µξ ∈ S̊h are the unique weak solutions

to Lh,m (µζ) = −ζ and Lh,m (µξ) = −ξ. Define

(ζ, ξ)L−1
h,m

:= `mh (µζ , µξ) = − (ζ, µξ) = − (µζ , ξ) . (3.19)

( · , · )L−1
h,m

defines an inner product on S̊h. The induced norm is

‖ζ‖L−1
h,m

=
√

(ζ, ζ)L−1
h,m
, ∀ ζ ∈ S̊h. (3.20)
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Proof. Let ζ, ψ, ξ ∈ S̊h with α, β ∈ R. By definition (3.19)

(αζ + βψ, ξ)L−1
h,m

= − (αζ + βψ, µξ) = −α (ζ, µξ)− β (ψ, µξ)

= α (ζ, ξ)L−1
h,m

+ β (ψ, ξ)L−1
h,m

,

(ζ, ξ)L−1
h,m

= `mh (µζ , µξ) = `mh (µξ, µζ) = (ξ, ζ)L−1
h,m

,

(ζ, ζ)L−1
h,m

= `mh (µζ , µζ) ≥ 0

with equality if and only if µζ = 0 since `mh ( · , · ) defines an inner product on S̊h. By

definition, µζ = 0 if and only if ζ = 0.

Using our discrete negative norm we can define a variational problem closely

related to our fully discrete scheme.

Lemma 3.3.8. Let ϕm−1
h ∈ S̊h be given. Take ϕm−1

h,? as in (3.11). For all ϕh ∈ S̊h,

define the nonlinear functional

Gh(ϕh) :=
τ

2

∥∥∥∥∥ϕh − ϕm−1
h,?

τ

∥∥∥∥∥
2

L−1
h,m

+
1

4ε

∥∥ϕh + φ0

∥∥4

L4 +
ε

2
‖∇ϕh‖2

L2

−1

ε

(
ϕm−1
h + φ0, ϕh

)
+
θ

2
‖ϕh‖2

−1,h . (3.21)

Gh is strictly convex and coercive on the linear subspace S̊h. Consequently, Gh has a

unique minimizer, call it ϕmh ∈ S̊h. Moreover, ϕmh ∈ S̊h is the unique minimizer of

Gh if and only if it is the unique solution to

ε−1
((
ϕmh + φ0

)3
, ψ
)

+ ε a (ϕmh , ψ)−
(
µmh,?, ψ

)
+ (ξmh , ψ) = ε−1

(
ϕm−1
h + φ0, ψ

)
(3.22)
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for all ψ ∈ S̊h, where µmh,?, ξ
m
h ∈ S̊h are the unique solutions to

`mh
(
µmh,?, ν

)
= −

(
ϕmh − ϕm−1

h,?

τ
, ν

)
∀ ν ∈ S̊h, (3.23)

a (ξmh , ζ) = θ (ϕmh , ζ) ∀ ζ ∈ S̊h. (3.24)

Proof. We begin by showing Gh is strictly convex. To do so, we consider the second

derivative of Gh(ϕh + sψ) with respect to s and set s = 0. Hence,

Gh(ϕh + sψ) =
1

2τ

∥∥ϕh + sψ − ϕm−1
h,?

∥∥2

L−1
h,m

+
1

4ε

∥∥ϕh + sψ + φ0

∥∥4

L4 +
ε

2
‖∇(ϕh + sψ)‖2

L2

− 1

ε

(
ϕm−1
h + φ0, ϕh + sψ

)
+
θ

2
‖ϕh + sψ‖2

−1,h .

Taking the derivative with respect to s, we have

G′h(ϕh + sψ) =
1

τ

(
ϕh + sψ − ϕm−1

h,? , ψ
)
L−1
h,m

+
1

ε

(
ψ
(
ϕh + sψ + φ0

)
,
(
ϕh + sψ + φ0

)2
)

+ ε (∇(ϕh + sψ),∇ψ)− 1

ε

(
ϕm−1
h + φ0, ψ

)
+ θ (ϕh + sψ, ψ)−1,h .

(3.25)

Taking the second derivative with respect to s, we have

G′′h(ϕh + sψ) =
1

τ
‖ψ‖2

L−1
h,m

+
3

ε

((
ϕh + sψ + φ0

)2
, ψ2
)

+ ε ‖∇ψ‖2
L2 + θ ‖ψ‖2

−1,h .

Setting s = 0,

G′′h(ϕh) =
1

τ
‖ψ‖2

L−1
h,m

+
3

ε

((
ϕh + φ0

)2
, ψ2
)

+ ε ‖∇ψ‖2
L2 + θ ‖ψ‖2

−1,h > 0

for all ϕh ∈ S̊h. To show Gh is coercive, we need to show that there exists constants

α > 0, β ≥ 0 such that Gh(ϕh) ≥ α ‖ϕh‖H1 − β for all ϕh ∈ S̊h. Using the Cauchy
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Schwartz inequality, Young’s inequality, and Poincarè’s inequality,

Gh(ϕh) ≥ C0(ε) ‖∇ϕh‖2
L2 − C1(ε)

∥∥ϕm−1
h + φ0

∥∥2

L2 − C2(ε) ‖ϕh‖2
L2 ,

where C0(ε) depends on the Poincarè constant and C2(ε) is chosen to be less than

C0(ε). Therefore,

Gh(ϕh) ≥ α ‖∇ϕh‖2
L2 − β,

where α = C0(ε)−C2(ε) and β = C1(ε)
∥∥ϕm−1

h + φ0

∥∥2

L2 do not depend on ϕh. Hence,

Gh has a unique minimizer, ϕmh ∈ S̊h which solves

G′h(ϕ
m
h ) =

1

τ

(
ϕmh − ϕm−1

h,? , ψ
)
L−1
h,m

+
1

ε

((
ϕmh + φ0

)3
, ψ
)

+ ε (∇ϕmh ,∇ψ)− 1

ε

(
ϕm−1
h + φ0, ψ

)
+ θ (ϕmh , ψ)−1,h = 0,

for all ψ ∈ S̊h where we have set s = 0 in (3.25). By Lemma 3.3.7 and (3.10c), we

have ϕmh ∈ S̊h is the unique minimizer of Gh if and only if it is the unique solution to

ε−1
((
ϕmh + φ0

)3
, ψ
)

+ ε a (ϕmh , ψ)−
(
µmh,?, ψ

)
+ (ξmh , ψ) = ε−1

(
ϕm−1
h + φ0, ψ

)
(3.26)

for all ψ ∈ S̊h, where µmh,?, ξ
m
h ∈ S̊h are the unique solutions to

`mh
(
µmh,?, ν

)
= −

(
ϕmh − ϕm−1

h,?

τ
, ν

)
∀ ν ∈ S̊h,

a (ξmh , ζ) = θ (ϕmh , ζ) ∀ ζ ∈ S̊h.

Finally, we are in the position to prove the unconditional unique solvability of our

scheme.
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Theorem 3.3.9. The scheme (3.7a) – (3.7e), or, equivalently, the scheme (3.10a)

– (3.10e), is uniquely solvable for any mesh parameters τ and h and for any of the

model parameters.

Proof. Suppose
(
ϕm−1
h , 1

)
= 0. It is clear that a necessary condition for solvability of

(3.10a) – (3.10e) is that

(ϕmh , 1) =
(
ϕm−1
h , 1

)
= 0, (3.27)

as can be found by taking ν ≡ 1 in (3.10a). Now, let ϕmh , µ
m
h,? ∈ S̊h× S̊h be a solution

of (3.22) – (3.24). (The other variables may be regarded as auxiliary.) Set

µmh :=
1

ε|Ω|
(
(ϕmh + φ0)3 −

(
ϕmh + φ0

)
, 1
)

=
1

ε|Ω|
(
(ϕmh + φ0)3, 1

)
− φ0

ε
, (3.28)

and define µmh := µmh,? + µmh . There is a one-to-one correspondence of the respective

solution sets: ϕmh , µ
m
h,? ∈ S̊h × S̊h is a solution to (3.22) – (3.24), if and only if

ϕmh , µ
m
h ∈ S̊h × Sh is a solution to (3.10a) – (3.10e), if and only if φmh , µ

m
h ∈ Sh × Sh

is a solution to (3.7a) – (3.7e), where

φmh = ϕmh + φ0, µmh = µmh,? + µmh . (3.29)

But (3.22) – (3.24) admits a unique solution, which proves that (3.7a) – (3.7e) and

(3.10a) – (3.10e) are uniquely solvable.
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3.3.3 Unconditional Energy Stability

We now show that the solutions to our scheme enjoy stability properties that are

similar to those of the PDE solutions, and moreover, these properties hold regardless

of the sizes of h and τ . To begin, we establish a few necessary identities.

Lemma 3.3.10. Let (φmh , µ
m
h ,u

m
h ) ∈ Sh × Sh ×Xh be the unique solution of (3.7a)–

(3.7e), with the other variables regarded as auxiliary. Then the following identities

hold for any h, τ > 0:

(δτu
m
h ,u

m
h ) =

1

2

[
δτ ‖umh ‖

2
L2 + τ ‖δτumh ‖

2
L2

]
, (3.30)

a (φmh , δτφ
m
h ) =

1

2

[
δτ ‖∇φmh ‖

2
L2 + τ ‖∇δτφmh ‖

2
L2

]
, (3.31)(

(φmh )3 − φm−1
h , δτφ

m
h

)
=

1

4
δτ
∥∥(φmh )2 − 1

∥∥2

L2 +
τ

4

[∥∥δτ (φmh )2
∥∥2

L2 (3.32)

+ 2 ‖φmh δτφmh ‖
2
L2 + 2 ‖δτφmh ‖

2
L2

]
,(

φmh − φ0, δτφ
m
h

)
−1,h

=
1

2

[
δτ
∥∥φmh − φ0

∥∥2

−1,h
+ τ ‖δτφmh ‖

2
−1,h

]
. (3.33)

Proof. To prove (3.30), we use the definition of δτu
m
h and expand as follows,

(δτu
m
h ,u

m
h ) =

1

τ

(
umh − um−1

h ,umh +
1

2
um−1
h − 1

2
um−1
h

)
=

1

2τ

(
umh − um−1

h ,umh + um−1
h + umh − um−1

h

)
=

1

2

[
δτ ‖umh ‖

2
L2 + τ ‖δτumh ‖

2
L2

]
.
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Identities (3.31) and (3.33) follow in a similar manner to (3.30). To prove (3.32), we

use the definition of δτφ
m
h and expand as follows,

(
(φmh )3 − φm−1

h , δτφ
m
h

)
=

1

2τ

(
(φmh )2 (φmh + φm−1

h

)
+ (φmh )2 (φmh − φm−1

h

)
, φmh − φm−1

h

)
− 1

τ

(
φm−1
h , φmh − φm−1

h

)
=

1

2τ

(
(φmh )2 , (φmh )2 −

(
φm−1
h

)2
)

+
1

2τ

(
(φmh )2 ,

(
φmh − φm−1

h

)2
)

− 1

2τ

(
‖φmh ‖

2
L2 −

∥∥φm−1
h

∥∥2

L2 −
∥∥φmh − φm−1

h

∥∥2

L2

)
=

1

4τ

(
(φmh )2 +

(
φm−1
h

)2
+ (φmh )2 −

(
φm−1
h

)2
, (φmh )2 −

(
φm−1
h

)2
)

+
1

2τ

(
(φmh )2 ,

(
φmh − φm−1

h

)2
)

− 1

2τ

(
‖φmh ‖

2
L2 −

∥∥φm−1
h

∥∥2

L2 −
∥∥φmh − φm−1

h

∥∥2

L2

)
=

1

4τ

(∥∥(φmh )2
∥∥2

L2 −
∥∥∥(φm−1

h

)2
∥∥∥2

L2
+
∥∥∥(φmh )2 −

(
φm−1
h

)2
∥∥∥2

L2

)
+

1

2τ

(
φmh
(
φmh − φm−1

h

)
, φmh

(
φmh − φm−1

h

))
− 1

2τ

(
‖φmh ‖

2
L2 −

∥∥φm−1
h

∥∥2

L2 −
∥∥φmh − φm−1

h

∥∥2

L2

)
=

1

4τ

(∥∥(φmh )2
∥∥2

L2 − 2 ‖φmh ‖
2
L2 + 1

)
− 1

4τ

(∥∥∥(φm−1
h

)2
∥∥∥2

L2
− 2

∥∥φm−1
h

∥∥2

L2 + 1

)
+

1

4τ

∥∥∥(φmh )2 −
(
φm−1
h

)2
∥∥∥2

L2
+

1

2τ

∥∥φmh (φmh − φm−1
h

)∥∥2

L2

+
1

2τ

∥∥φmh − φm−1
h

∥∥2

L2

=
1

4
δτ
∥∥(φmh )2 − 1

∥∥2

L2 +
τ

4

∥∥δτ (φmh )2
∥∥2

L2

+
τ

2

[
‖φmh δτφmh ‖

2
L2 + ‖δτφmh ‖

2
L2

]
.

With these identities in hand, the unconditional energy stability follows as a direct

result of the convex decomposition represented in the scheme.
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Lemma 3.3.11. Let (φmh , µ
m
h ,u

m
h ) ∈ Sh × Sh ×Xh be the unique solution of (3.7a)–

(3.7e), with the other variables regarded as auxiliary. Then the following energy law

holds for any h, τ > 0:

E
(
u`h, φ

`
h

)
+ τε

∑̀
m=1

‖∇µmh ‖
2
L2 + τ

λ

γ

∑̀
m=1

‖∇umh ‖
2
L2 + τ

η

γ

∑̀
m=1

‖umh ‖
2
L2

+ τ 2
∑̀
m=1

{
ε

2
‖∇ (δτφ

m
h )‖2

L2 +
1

2γ
‖δτumh ‖

2
L2 +

1

4ε

∥∥δτ (φmh )2
∥∥2

L2

+
1

2ε
‖φmh δτφmh ‖

2
L2 +

1

2ε
‖δτφmh ‖

2
L2 +

θ

2
‖δτφmh ‖

2
−1,h

}
= E

(
u0
h, φ

0
h

)
,

(3.34)

for all 1 ≤ ` ≤M .

Proof. We first set ν = µmh in (3.7a), ψ = δτφ
m
h in (3.7b), ζ = −Th (δτφ

m
h ) in (3.7c),

v = 1
γ
umh in (3.7d), q = 1

γ
pmh in (3.7e), to obtain

(δτφ
m
h , µ

m
h ) + ε ‖∇µmh ‖

2
L2 + b

(
φm−1
h ,umh , µ

m
h

)
= 0,

(3.35)

1

ε

(
(φmh )3 − φm−1

h , δτφ
m
h

)
+ ε a (φmh , δτφ

m
h )− (µmh , δτφ

m
h ) + (ξmh , δτφ

m
h ) = 0,

(3.36)

−a (ξmh ,Th (δτφ
m
h )) + θ

(
φmh − φ0,Th (δτφ

m
h )
)

= 0,

(3.37)

1

γ
(δτu

m
h ,u

m
h ) +

λ

γ
‖∇umh ‖

2
L2 +

η

γ
‖umh ‖

2
L2 −

1

γ
c (umh , p

m
h )− b

(
φm−1
h ,umh , µ

m
h

)
= 0,

(3.38)

1

γ
c (umh , p

m) = 0.

(3.39)

Combining (3.35) – (3.39), using the identities from Lemma 3.3.10, and applying the

operator τ
∑`

m=1 to the combined equation, the result is obtained.
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The discrete energy law immediately implies the following uniform (in h and τ)

a priori estimates for φmh , µmh , and umh . Note that, from this point, we will not track

the dependence of the estimates on the interface parameter ε > 0, though this may

be of importance, especially if ε is made smaller.

Lemma 3.3.12. Let (φmh , µ
m
h ,u

m
h ) ∈ Sh × Sh ×Xh be the unique solution of (3.7a)–

(3.7e). Suppose that E (u0
h, φ

0
h) < C, independent of h. Then the following estimates

hold for any h, τ > 0:

max
0≤m≤M

[
‖umh ‖

2
L2 + ‖∇φmh ‖

2
L2 +

∥∥(φmh )2 − 1
∥∥2

L2 +
∥∥φmh − φ0

∥∥2

−1,h

]
≤ C, (3.40)

max
0≤m≤M

[
‖φmh ‖

4
L4 + ‖φmh ‖

2
L2 + ‖φmh ‖

2
H1

]
≤ C, (3.41)

τ
M∑
m=1

[
‖∇µmh ‖

2
L2 + ‖∇umh ‖

2
L2 + ‖umh ‖

2
L2

]
≤ C, (3.42)

M∑
m=1

[ ∥∥∇ (φmh − φm−1
h

)∥∥2

L2 +
∥∥φmh − φm−1

h

∥∥2

L2 +
∥∥φmh (φmh − φm−1

h )
∥∥2

L2

+
∥∥(φmh )2 − (φm−1

h )2
∥∥2

L2 +
∥∥φmh − φm−1

h

∥∥2

−1,h
+
∥∥umh − um−1

h

∥∥2

L2

]
≤ C, (3.43)

for some constant C > 0 that is independent of h, τ , and T .

We are able to prove the next set of a priori stability estimates without any

restrictions of h and τ .

Lemma 3.3.13. Let (φmh , µ
m
h ,u

m
h ) ∈ Sh × Sh ×Xh be the unique solution of (3.7a)–

(3.7e), with the other variables regarded as auxiliary. Suppose that E (u0
h, φ

0
h) < C

independent of h. The following estimates hold for any h, τ > 0:

τ
M∑
m=1

[
‖δτφmh ‖

2
H−1 + ‖δτφmh ‖

2
−1,h + ‖∆hφ

m
h ‖

2
L2 + ‖µmh ‖

2
L2 + ‖φmh ‖

4(6−d)
d

L∞

]
≤ C(T + 1),

(3.44)

for some constant C > 0 that is independent of h, τ , and T .
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Proof. Let Qh : L2(Ω) → Sh be the L2 projection, i.e., (Qhν − ν, χ) = 0, for all

χ ∈ Sh. Suppose ν ∈ H̊1(Ω). Then, using (3.40) and Sobolev embeddings,

(δτφ
m
h , ν) = (δτφ

m
h ,Qhν) (3.45)

= −ε
(
∇µmh ,∇Qhν

)
− b
(
φm−1
h ,umh ,Qhν

)
(3.46)

≤ ε ‖∇µmh ‖L2 ‖∇Qhν‖L2 +
∥∥∇φm−1

h

∥∥
L2 ‖umh ‖L4 ‖Qhν‖L4 (3.47)

≤ C [ε ‖∇µmh ‖L2 + ‖umh ‖H1 ] ‖∇Qhν‖L2 (3.48)

≤ C [ε ‖∇µmh ‖L2 + ‖umh ‖H1 ] ‖∇ν‖L2 , (3.49)

where we used the H1 stability of the L2 projection in the last step. Applying τ
∑M

m=1

gives (3.44.1) – which, in our notation, is the bound on the first term of the left side

of (3.44). The estimate (3.44.2) follows from the inequality ‖ν‖−1,h ≤ ‖ν‖H−1 , which

holds for all ν ∈ S̊h.

Setting ψh = ∆hφ
m
h in (3.7b) and using the definition of ∆hφ

m
h , we get

ε ‖∆hφ
m
h ‖

2
L2 =− ε a (φmh ,∆hφ

m
h )

=− (µmh ,∆hφ
m
h ) + ε−1

(
(φmh )3 − φm−1

h ,∆hφ
m
h

)
+ (ξmh ,∆hφ

m
h )

≤a (µmh , φ
m
h )− a (ξmh , φ

m
h )

+ ε−1

(
ε2

2
‖∆hφ

m
h ‖

2
L2 +

1

2ε2

∥∥(φmh )3 − φm−1
h

∥∥2

L2

)
≤1

2
‖∇µmh ‖

2
L2 +

1

2
‖∇φmh ‖

2
L2 +

ε

2
‖∆hφ

m
h ‖

2
L2

+ C
∥∥(φmh )3 − φm−1

h

∥∥2

L2 − θ
(
φmh − φ0, φ

m
h

)
≤1

2
‖∇µmh ‖

2
L2 + C ‖∇φmh ‖

2
L2 +

ε

2
‖∆hφ

m
h ‖

2
L2

+ C
∥∥(φmh )3 − φm−1

h

∥∥2

L2 + C
∥∥φmh − φ0

∥∥2

−1,h
.
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Hence,

ε ‖∆hφ
m
h ‖

2
L2 ≤ ‖∇µmh ‖

2
L2 + C ‖∇φmh ‖

2
L2 + C

∥∥(φmh )3 − φm−1
h

∥∥2

L2 + C
∥∥φmh − φ0

∥∥2

−1,h
.

(3.50)

Now using (3.41), we have

∥∥(φmh )3 − φm−1
h

∥∥2

L2 ≤ 2
(
‖φmh ‖

6
L6 +

∥∥φm−1
h

∥∥2

L2

)
≤ C ‖φmh ‖

6
H1 + C

≤ C, (3.51)

where we used the embedding H1(Ω) ↪→ L6(Ω), for d = 2, 3. Putting the last two

inequalities together, we have

ε ‖∆hφ
m
h ‖

2
L2 ≤ ‖∇µmh ‖

2
L2 + C. (3.52)

Applying τ
∑M

m=1, estimate (3.44.3) now follows from (3.42.1).

Now, take ψ = µmh in (3.7b). Then, using (3.40) and (3.51), we have

‖µmh ‖
2
L2 ≤ ε−1

∥∥(φmh )3 − φm−1
h

∥∥
L2 ‖µmh ‖L2 + ε ‖∇φmh ‖L2 ‖∇µmh ‖L2 + ‖ξmh ‖L2 ‖µmh ‖L2

≤ 1

ε2

∥∥(φmh )3 − φm−1
h

∥∥2

L2 +
1

4
‖µmh ‖

2
L2 +

ε

2
‖∇φmh ‖

2
L2 +

ε

2
‖∇µmh ‖

2
L2

+C ‖∇ξmh ‖
2
L2 +

1

4
‖µmh ‖L2

≤ C +
1

2
‖µmh ‖

2
L2 +

ε

2
‖∇µmh ‖

2
L2 + C ‖∇ξmh ‖

2
L2

≤ C +
1

2
‖µmh ‖

2
L2 +

ε

2
‖∇µmh ‖

2
L2 + C

∥∥φmh − φ0

∥∥2

−1,h

≤ C +
1

2
‖µmh ‖

2
L2 +

ε

2
‖∇µmh ‖

2
L2 .

Hence

‖µmh ‖
2
L2 ≤ C + ε ‖∇µmh ‖

2
L2 . (3.53)

Applying τ
∑M

m=1, estimate (3.44.4) now follows from (3.42.1).
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To prove estimate (3.44.5), we use the discrete Gagliardo-Nirenberg inequality

(2.36). Applying τ
∑M

m=1 and using H1(Ω) ↪→ L6(Ω), (3.41.3) and (3.44.3), estimate

(3.44.5) follows.

Lemma 3.3.14. Let (φmh , µ
m
h ,u

m
h ) ∈ Sh × Sh ×Xh be the unique solution of (3.7a)–

(3.7e), with the other variables regarded as auxiliary. Suppose that E (u0
h, φ

0
h) , ‖µ0

h‖
2
L2 <

C independent of h, where µ0
h is defined below in (3.56), d = 2, 3. The following

estimates hold for any h, τ > 0:

τ

M∑
m=1

‖δτφmh ‖
2
L2 ≤ C(T + 1), (3.54)

max
1≤m≤M

[
‖µmh ‖

2
L2 + ‖∆hφ

m
h ‖

2
L2 + ‖φmh ‖

4(6−d)
d

L∞

]
≤ C(T + 1), (3.55)

for some constant C > 0 that is independent of h, τ , and T .

Proof. We prove (3.54) and (3.55.1) together. To do so, we first define µ0
h via

(
µ0
h, ψ
)

:= ε a
(
φ0
h, ψ
)

+ ε−1
((
φ0
h

)3 − φ0
h, ψ
)

+ θ
(
Th
(
φ0
h − φ0

)
, ψ
)
, (3.56)

for all ψ ∈ Sh, and

δτφ
0
h :≡ 0 ∈ Sh. (3.57)

Now, we subtract (3.7b) from itself at consecutive time steps to obtain

τ (δτµ
m
h , ψ) = τε a (δτφ

m
h , ψ) + ε−1

(
(φmh )3 −

(
φm−1
h

)3
, ψ
)

−τε−1
(
δτφ

m−1
h , ψ

)
+ θτ (Th (δτφ

m
h ) , ψ) , (3.58)

45



for all ψ ∈ Sh, which is well-defined for all 1 ≤ m ≤M . Taking ψ = µmh in (3.58) and

ν = −τδτφmh in (3.7a) and adding the results yields

τ (δτµ
m
h , µ

m
h ) + τ ‖δτφmh ‖

2
L2 = τε−1

(
δτφ

m
h

{
(φmh )2 + φmh φ

m−1
h +

(
φm−1
h

)2
}
, µmh

)
− τε−1

(
δτφ

m−1
h , µmh

)
+ θτ

(
Th (δτφ

m
h ) , µmh − µmh

)
− τ b

(
φm−1
h ,umh , δτφ

m
h

)
≤ τε−1

∥∥∥(φmh )2 + φmh φ
m−1
h +

(
φm−1
h

)2
∥∥∥
L3
‖µmh ‖L6 ‖δτφmh ‖L2

+ τε−1 ‖∇µmh ‖L2

∥∥δτφm−1
h

∥∥
−1,h

+ θτ ‖∇Th (δτφ
m
h )‖L2

∥∥µmh − µmh ∥∥−1,h

− τ b
(
φm−1
h ,umh , δτφ

m
h

)
≤Cτ

∥∥∥(φmh )2 + φmh φ
m−1
h +

(
φm−1
h

)2
∥∥∥2

L3
‖µmh ‖

2
H1

+
τ

4
‖δτφmh ‖

2
L2 + Cτ ‖∇µmh ‖

2
L2 + Cτ

∥∥δτφm−1
h

∥∥2

−1,h

+ Cτ ‖∇Th (δτφ
m
h )‖2

L2 + Cτ
∥∥µmh − µmh ∥∥2

−1,h

− τ b
(
φm−1
h ,umh , δτφ

m
h

)
≤Cτ

(
‖φmh ‖

4
L6 +

∥∥φm−1
h

∥∥4

L6

)
‖µmh ‖

2
H1 +

τ

4
‖δτφmh ‖

2
L2

+ Cτ ‖∇µmh ‖
2
L2 + Cτ

∥∥δτφm−1
h

∥∥2

−1,h
+ Cτ ‖δτφmh ‖

2
−1,h

+ Cτ ‖∇µmh ‖
2
L2 − τ b

(
φm−1
h ,umh , δτφ

m
h

)
≤Cτ ‖µmh ‖

2
H1 +

τ

4
‖δτφmh ‖

2
L2 + Cτ

∥∥δτφm−1
h

∥∥2

−1,h

+ Cτ ‖δτφmh ‖
2
−1,h − τ b

(
φm−1
h ,umh , δτφ

m
h

)
(3.59)

where we have used H1(Ω) ↪→ L6(Ω), Young’s Inequality, and (3.41).

Now we bound the trilinear form b( · , · , · ). To do so, we note the discrete estimate

‖∇νh‖L4 ≤ C (‖∇νh‖L2 + ‖∆hνh‖L2)
d
4 ‖∇νh‖

4−d
4

L2 ∀ νh ∈ Sh, d = 2, 3. (3.60)

Using Holder’s inequality, (3.60), (3.40.1), and (3.40.2)
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∣∣b (φm−1
h ,umh , δτφ

m
h

)∣∣ ≤ ∥∥∇φm−1
h

∥∥
L4 ‖umh ‖L4 ‖δτφmh ‖L2

≤ C ‖δτφmh ‖L2 ‖∇umh ‖L2

(∥∥∇φm−1
h

∥∥
L2 +

∥∥∆hφ
m−1
h

∥∥
L2

)
≤ 1

4
‖δτφmh ‖

2
L2 + C ‖∇umh ‖

2
L2 + C ‖∇umh ‖

2
L2

∥∥∆hφ
m−1
h

∥∥2

L2 .

(3.61)

Setting ψh = ∆hφ
m
h in (3.7b) and (3.56) and using the definition of ∆hφ

m
h , it follows

that

‖∆hφ
m
h ‖

2
L2 ≤ C ‖µmh ‖

2
L2 + C, 0 ≤ m ≤M, (3.62)

so that, for 1 ≤ m ≤M ,

∣∣b (φm−1
h ,umh , δτφ

m
h

)∣∣ ≤ 1

4
‖δτφmh ‖

2
L2 + C ‖∇umh ‖

2
L2 + C ‖∇umh ‖

2
L2

∥∥µm−1
h

∥∥2

L2 . (3.63)

Thus,

τ (δτµ
m
h , µ

m
h ) +

τ

2
‖δτφmh ‖

2
L2 ≤ Cτ ‖µmh ‖

2
H1 + Cτ

∥∥δτφm−1
h

∥∥2

−1,h
+ Cτ ‖δτφmh ‖

2
−1,h

+Cτ ‖∇umh ‖
2
L2

∥∥µm−1
h

∥∥2

L2 + Cτ ‖∇umh ‖
2
L2 . (3.64)

Applying
∑`

m=1, and using (3.42), (3.44), δτφ
0
h ≡ 0, and the identity

τ (δτµ
m
h , µ

m
h ) =

(
µmh − µm−1

h , µmh
)

=
1

2
‖µmh ‖

2
L2 +

1

2

∥∥µmh − µm−1
h

∥∥2

L2 −
1

2

∥∥µm−1
h

∥∥2

L2 ,

(3.65)

we conclude

1

2

∥∥µ`h∥∥2

L2 −
1

2

∥∥µ0
h

∥∥2

L2 +
τ

2

∑̀
m=1

‖δτφmh ‖
2
L2 ≤ C(T + 1) + Cτ

`−1∑
m=0

∥∥∇um+1
h

∥∥2

L2 ‖µmh ‖
2
L2 .

(3.66)

Since the estimate is explicit with respect to
{
‖µmh ‖

2
L2

}
and τ

∑M
m=1 ‖∇umh ‖

2
L2 ≤ C, we

may appeal directly to the discrete Gronwall inequality in Lemma 2.2.26. Estimates
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(3.54) and (3.55.1) follow immediately. Estimate (3.55.2) follows from (3.55.1) and

(3.62). Estimate (3.55.3) follows from the discrete Gagliardo-Nirenbergy Inequality,

the embedding H1(Ω) ↪→ L6(Ω), (3.41.3), and (3.55.2).

Remark 3.3.15. The idea for controlling the time-lagged
∥∥∆hφ

m−1
h

∥∥2

L2 term in (3.61)

using the discrete Gronwall inequality was inspired by a similar technique from a recent

paper by G. Grün [29], which deals with a different PDE system (as well as a different

numerical method) from that examined here and is not concerned with error estimates.

3.4 Error Estimates for the Fully Discrete Convex

Splitting Scheme

For the error estimates that we pursue in this section, we shall assume that weak

solutions have the additional regularities

φ ∈ H2
(
0, T ;L2(Ω)

)
∩ L∞

(
0, T ;W 1,6(Ω)

)
∩H1

(
0, T ;Hq+1(Ω)

)
,

ξ ∈ L2
(
0, T ;Hq+1(Ω)

)
,

µ ∈ L∞
(
0, T ;H1(Ω)

)
∩ L2

(
0, T ;Hq+1(Ω)

)
, (3.67)

u ∈ H2
(
0, T ; L2(Ω)

)
∩ L∞

(
0, T ; L4(Ω)

)
∩H1

(
0, T ; Hq+1(Ω)

)
,

p ∈ L2
(
0, T ;Hq(Ω) ∩ L2

0(Ω)
)
,

where q ≥ 1. Of course, some of these regularities are redundant because of

embeddings.
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Weak solutions (φ, µ) to (3.2a) - (3.2e) with the higher regularities (3.67) solve

the following variational problem:

(∂tφ, ν) + ε a (µ, ν) + b (φ,u, ν) = 0 ∀ ν ∈ H1(Ω), (3.68a)

(µ, ψ)− ε a (φ, ψ)− ε−1
(
φ3 − φ, ψ

)
− (ξ, ψ) = 0 ∀ψ ∈ H1(Ω), (3.68b)

a (ξ, ζ)− θ
(
φ− φ0, ζ

)
= 0 ∀ ζ ∈ H1(Ω), (3.68c)

(∂tu,v) + λ a (u,v) + η (u,v)− c (v, p)− γ b (φ,v, µ) = 0 ∀v ∈ H1
0(Ω), (3.68d)

c (u, q) = 0 ∀ q ∈ L2
0(Ω). (3.68e)

We define the following: for any real number m ∈ [0,M ],

tm := mτ, φm := φ(tm), δτφ
m :=

φm − φm−1

τ
,

Eφ,ma := φm −Rhφ
m, Eµ,ma := µm −Rhµ

m, Eu,ma := u−Phu, Eξ,ma := ξ −Rhξ,

σφ,m1 := δτRhφ
m − δτφm, σφ,m2 := δτφ

m − ∂tφm,

σu,m
1 := δτPhu

m − δτum, σu,m
2 := δτu

m − ∂tum.
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Then, for all ν, ψ, ζ ∈ Sh,v ∈ Xh, and q ∈ S̊h,

(δτRhφ
m, ν) + ε a (Rhµ

m, ν) + b (φm,um, ν) =
(
σφ,m1 + σφ,m2 , ν

)
,

(3.69a)

ε a (Rhφ
m, ψ)− (Rhµ

m, ψ) + (Rhξ
m, ψ) = (Eµ,ma , ψ)−

(
Eξ,ma , ψ

)
+

1

ε

(
(φm)3 − φm, ψ

)
,

(3.69b)

a (Rhξ
m, ζ)− θ

(
Rhφ

m − φ0, ζ
)

= θ
(
Eφ,ma , ζ

)
,

(3.69c)

(δτPhu
m,v) + λ a (Phu

m,v) + η (Phu
m,v)− c (v, Php

m)

−γ b (φm,v, µm) = (σu,m
1 + σu,m

2 ,v) ,

(3.69d)

c (Phu
m, q) = 0.

(3.69e)

Restating the fully discrete convex splitting scheme (3.7a) – (3.7e), for all ν, ψ, ζ ∈

Sh,v ∈ Xh, and q ∈ S̊h, we have

(δτφ
m
h , ν) + ε a (µmh , ν) + b

(
φm−1
h ,umh , ν

)
= 0, (3.70a)

ε a (φmh , ψ)− (µmh , ψ) + (ξmh , ψ) + ε−1
(
(φmh )3 − φm−1

h , ψ
)

= 0, (3.70b)

a (ξmh , ζ)− θ
(
φmh − φ0, ζ

)
= 0, (3.70c)

(δτu
m
h ,v) + λ a (umh ,v) + η (umh ,v)− c (v, pmh )− γ b

(
φm−1
h ,v, µmh

)
= 0, (3.70d)

c (umh , q) = 0. (3.70e)

Now, let us define the following notation

Eφ,mh := Rhφ
m − φmh , Eφ,m := φm − φmh , E

µ,m
h := Rhµ

m − µmh ,

Eξ,mh := Rhξ
m − ξmh , E

u,m
h := Phu

m − umh , E
p,m
h := Php

m − pmh .
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Subtracting (3.70a) - (3.70e) from (3.69a) - (3.69e), we obtain the following system

of equations for all ν, ψ, ζ ∈ Sh,v ∈ Xh, and q ∈ S̊h,

(
δτEφ,mh , ν

)
+ ε a (Eµ,mh , ν) =

(
σφ,m1 + σφ,m2 , ν

)
− b (φ,u, ν) + b

(
φm−1
h ,umh , ν

)
,

(3.71a)

ε a
(
Eφ,mh , ψ

)
− (Eµ,mh , ψ) +

(
Eξ,mh , ψ

)
= (Eµ,ma , ψ)−

(
Eξ,ma , ψ

)
+ ε−1

(
φm − φm−1

h , ψ
)

−ε−1
(
φ3 − (φmh )3, ψ

)
,

(3.71b)

a
(
Eξ,mh , ζ

)
− θ

(
Eφ,mh , ζ

)
= θ

(
Eφ,ma , ζ

)
,

(3.71c)

(δτEu,mh ,v) + λ a (Eu,mh ,v) + η (Eu,mh ,v)− c (v, Ep,mh ) = (σu,m
1 + σu,m

2 ,v) + γ b (φ,v, µ)

−γ b
(
φm−1
h ,v, µmh

)
,

(3.71d)

c (Eu,mh , q) = 0.

(3.71e)

Setting ν = Eµ,mh in (3.71a), ψ = δτEφ,mh in (3.71b), ζ = −Th
(
δτEφ,mh

)
in (3.71c),

v = 1
γ
Eu,mh in (3.71d), and q = 1

γ
Ep,mh in (3.71e) and adding the resulting equations

produces the key to the error analysis:

ε a
(
Eφ,mh , δτEφ,mh

)
+ θ

(
Eφ,mh , δτEφ,mh

)
−1,h

+
1

γ
(δτEu,mh , Eu,mh ) + ε ‖∇Eµ,mh ‖2

L2

+
λ

γ
‖∇Eu,mh ‖2

L2 +
η

γ
‖Eu,mh ‖2

L2 =
(
σφ,m1 + σφ,m2 , Eµ,mh

)
+

1

γ
(σu,m

1 + σu,m
2 , Eu,mh )

+
(
Eµ,ma , δτEφ,mh

)
− ε−1

(
(φm)3 − (φmh )3, δτEφ,mh

)
+
τ

ε

(
δτφ, δτEφ,mh

)
+ ε−1

(
Eφ,m−1, δτEφ,mh

)
−
(
Eξ,ma , δτEφ,mh

)
− θ

(
Eφ,ma ,Th

(
δτEφ,mh

))
− b (φ,u, Eµ,mh ) + b

(
φm−1
h ,umh , E

µ,m
h

)
+ b (φ, Eu,mh , µ)− b

(
φm−1
h , Eu,mh , µmh

)
. (3.72)

We now proceed to estimate the terms on the right hand side of (3.72).
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Lemma 3.4.1. Suppose that (φm, µm,um) is a weak solution to (3.68a) – (3.68e),

with the additional regularities (3.67). Then, for any h, τ > 0, there exists C > 0,

independent of h and τ , such that

∥∥∥σφ,m1 + σφ,m2

∥∥∥2

L2
≤ C

h2q+2

τ

∫ t

t−τ
‖∂sφ(s)‖2

Hq+1 ds+
τ

3

∫ t

t−τ
‖∂ssφ(s)‖2

L2 ds,

‖σu,m
1 + σu,m

2 ‖2
L2 ≤ C

h2q+2

τ

∫ t

t−τ
‖∂su(s)‖2

Hq+1 ds+
τ

3

∫ t

t−τ
‖∂ssu(s)‖2

L2 ds, (3.73)

for all t ∈ (τ, T ].

Proof. Using Taylor’s Theorem and properties of the Ritz projection,

∥∥∥σφ,m1

∥∥∥2

L2
=

∥∥∥∥1

τ

∫ t

t−τ
∂s (Rhφ(s)− φ(s)) ds

∥∥∥∥2

L2

=
1

τ 2

∥∥∥∥∫ t

t−τ
(Rh∂sφ(s)− ∂sφ(s)) ds

∥∥∥∥2

L2

≤ 1

τ 2

∫
Ω

∫ t

t−τ
12ds

∫ t

t−τ
(Rh∂sφ(s)− ∂sφ(s))2 ds dx

=
1

τ

∫ t

t−τ
‖Rh∂sφ(s)− ∂sφ(s)‖2

L2 ds

≤ C
h2q+2

τ

∫ t

t−τ
‖∂sφ(s)‖2

Hq+1 ds. (3.74)

By Taylor’s theorem,

∥∥∥σφ,m2

∥∥∥2

L2
=

∥∥∥∥1

τ

∫ t

t−τ
∂ssφ(s)(t− s)ds

∥∥∥∥2

L2

≤ 1

τ 2

∫
Ω

[∫ t

t−τ
(t− s)2 ds

∫ t

t−τ
(∂ssφ(s))2 ds

]
dx

=
1

τ 2

∫ t

t−τ
(t− s)2 ds

∫ t

t−τ
‖∂ssφ(s)‖2

L2 ds

=
τ 3

3τ 2

∫ t

t−τ
‖∂ssφ(s)‖2

L2 ds. (3.75)
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Using the triangle inequality, the result for
∥∥∥σφ,m1 + σφ,m2

∥∥∥2

L2
follows. A similar proof

can be constructed for ‖σu,m
1 + σu,m

2 ‖2
L2 .

Lemma 3.4.2. Suppose that (φm, µm,um) is a weak solution to (3.68a) – (3.68e),

with the additional regularities (3.67). Then, for any h, τ > 0,

∥∥∇ ((φm)3 − (φmh )3
)∥∥

L2 ≤ C
∥∥∇Eφ,m∥∥

L2 , (3.76)

where Eφ,m := φm − φmh .

Proof. For t ∈ [0, T ],

∥∥∇ ((φm)3 − (φmh )3
)∥∥

L2 ≤ 3
∥∥(φmh )2∇Eφ,m

∥∥
L2 + 3

∥∥∇φm (φm + φmh ) Eφ,m
∥∥
L2

≤ 3 ‖φmh ‖
2
L∞

∥∥∇Eφ,m∥∥
L2 + 3 ‖∇φm‖L6 ‖φm + φmh ‖L6

∥∥Eφ,m∥∥
L6

≤ 3
(
‖φmh ‖

2
L∞ + C ‖∇φm‖L6 ‖φm + φmh ‖H1

) ∥∥∇Eφ,m∥∥
L2

≤ C
∥∥∇Eφ,m∥∥

L2 , (3.77)

where C > 0 is independent of t ∈ [0, T ] and where we have used the unconditional

a priori estimates in Lemmas 3.3.13 and 3.3.14 and the assumption that φ ∈

L∞ (0, T ;W 1,6(Ω)).

Lemma 3.4.3. Suppose that (φm, µm,um) is a weak solution to (3.68a) – (3.68e),

with the additional regularities (3.67). Then, for any h, τ > 0, and any α > 0 there

exists a constant C = C(α) > 0, independent of h and τ , such that

ε

2
‖∇Eµ,mh ‖2

L2 + ε a
(
Eφ,mh , δτEφ,mh

)
+ θ

(
Eφ,mh , δτEφ,mh

)
−1,h

+ (δτEu,mh , Eu,mh )

+
λ

2γ
‖∇Eu,mh ‖2

L2 +
η

2γ
‖Eu,mh ‖2

L2 ≤ C
∥∥∥∇Eφ,mh

∥∥∥2

L2
+ C

∥∥∥∇LτEφ,mh

∥∥∥2

L2

+ α
∥∥∥δτEφ,mh

∥∥∥2

−1,h
+ CR, (3.78)
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for any t ∈ (τ, T ], where R is the consistency term

R(t) =
h2q+2

τ

∫ t

t−τ
‖∂sφ(s)‖2

Hq+1 ds+
τ

3

∫ t

t−τ
‖∂ssφ(s)‖2

L2 ds+ τ

∫ t

t−τ
‖∇∂sφ(s)‖2

L2 ds

+
h2q+2

τ

∫ t

t−τ
‖∂su(s)‖2

Hq+1 ds+
τ

3

∫ t

t−τ
‖∂ssu(s)‖2

L2 ds+ h2q+2 |φm|2Hq+1

+ h2q
(
|µm|2Hq+1 + |φm|2Hq+1 +

∣∣φm−1
∣∣2
Hq+1 + |ξm|2Hq+1 + |um|2Hq+1 + |pm|2Hq

)
.

(3.79)

Proof. Using Lemmas 3.4.1 and 2.2.22, the Cauchy-Schwarz inequality, the definition

above, and the fact that
(
σφ,m1 + σφ,m2 , 1

)
= 0, we get the following estimates:

∣∣∣(σφ,m1 + σφ,m2 , Eµ,mh

)∣∣∣ ≤ ∥∥∥σφ,m1 + σφ,m2

∥∥∥
−1,h
‖∇Eµ,mh ‖L2

≤C
∥∥∥σφ,m1 + σφ,m2

∥∥∥
L2
‖∇Eµ,mh ‖L2

≤C
∥∥∥σφ,m1 + σφ,m2

∥∥∥2

L2
+

ε

10
‖∇Eµ,mh ‖2

L2

≤C
(
h2q+2

τ

∫ t

t−τ
‖∂sφ(s)‖2

Hq+1 ds+
τ

3

∫ t

t−τ
‖∂ssφ(s)‖2

L2 ds

)
+

ε

10
‖∇Eµ,mh ‖2

L2 (3.80)

and, similarly,

|(σu,m
1 + σu,m

2 , Eu,mh )| ≤C
(
h2q+2

τ

∫ t

t−τ
‖∂su(s)‖2

Hq+1 ds+
τ

3

∫ t

t−τ
‖∂ssu(s)‖2

L2 ds

)
+

η

2γ
‖Eu,mh ‖2

L2 . (3.81)

Now, from the standard finite element approximation theory

‖∇Eµ,ma ‖L2 = ‖∇(Rhµ
m − µm)‖L2 ≤ Chq |µm|Hq+1 .
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Applying Lemma 2.2.22 and the last estimate

∣∣∣(Eµ,ma , δτEφ,mh

)∣∣∣ ≤ C ‖∇Eµ,ma ‖L2

∥∥∥δτEφ,mh

∥∥∥
−1,h

≤ Chq |µm|Hq+1

∥∥∥δτEφ,mh

∥∥∥
−1,h

≤ Ch2q |µm|2Hq+1 +
α

6

∥∥∥δτEφ,mh

∥∥∥2

−1,h
(3.82)

and, similarly,

∣∣∣(Eξ,ma , δτEφ,mh

)∣∣∣ ≤ Ch2q |ξm|2Hq+1 +
α

6

∥∥∥δτEφ,mh

∥∥∥2

−1,h
. (3.83)

Now, it follows that

‖τ∇δτφm‖2
L2 ≤ τ

∫ t

t−τ
‖∇∂sφ(s)‖2

L2 ds (3.84)

and, therefore,

τ

ε

∣∣∣(δτφm, δτEφ,mh

)∣∣∣ ≤ 1

ε
‖τ∇δτφm‖L2

∥∥∥δτEφ,mh

∥∥∥
−1,h

≤ Cτ

∫ t

t−τ
‖∇∂sφ(s)‖2

L2 ds+
α

6

∥∥∥δτEφ,mh

∥∥∥2

−1,h
. (3.85)
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Using Lemmas 2.2.22 and 3.4.2 , as well as Eφ,m = Eφ,ma + Eφ,mh and a standard

error estimate,

1

ε

∣∣∣((φm)3 − (φmh )3, δτEφ,mh

)∣∣∣ ≤ C
∥∥∇ ((φm)3 − (φmh )3

)∥∥
L2

∥∥∥δτEφ,mh

∥∥∥
−1,h

≤ C
∥∥∇ ((φm)3 − (φmh )3

)∥∥2

L2 +
α

6

∥∥∥δτEφ,mh

∥∥∥2

−1,h

≤ C
∥∥∇Eφ,m∥∥2

L2 +
α

6

∥∥∥δτEφ,mh

∥∥∥2

−1,h

≤ C
∥∥∇Eφ,ma

∥∥2

L2 + C
∥∥∥∇Eφ,mh

∥∥∥2

L2
+
α

6

∥∥∥δτEφ,mh

∥∥∥2

−1,h

≤ Ch2q |φm|2Hq+1 + C
∥∥∥∇Eφ,mh

∥∥∥2

L2
+
α

6

∥∥∥δτEφ,mh

∥∥∥2

−1,h
.

(3.86)

With similar steps as in the last estimate,

1

ε

∣∣∣(Eφ,m−1, δτEφ,mh

)∣∣∣ ≤ C
∥∥∇Eφ,m−1

∥∥
L2

∥∥∥δτEφ,mh

∥∥∥
−1,h

≤ Ch2q
∣∣φm−1

∣∣2
Hq+1 + C

∥∥∥∇Eφ,m−1
h

∥∥∥2

L2
+
α

6

∥∥∥δτEφ,mh

∥∥∥2

−1,h
.

(3.87)

Using the estimate

∥∥∥Th (δτEφ,mh

)∥∥∥2

L2
≤ C

∥∥∥∇Th (δτEφ,mh

)∥∥∥2

L2
= C

∥∥∥δτEφ,mh

∥∥∥2

−1,h
,

we obtain

∣∣∣θ (Eφ,ma ,Th
(
δτEφ,mh

))∣∣∣ ≤ θ
∥∥Eφ,ma

∥∥
L2

∥∥∥Th (δτEφ,mh

)∥∥∥
L2

≤ Chq+1 |φm|Hq+1

∥∥∥δτEφ,mh

∥∥∥
−1,h

≤ Ch2q+2 |φm|2Hq+1 +
α

6

∥∥∥δτEφ,mh

∥∥∥2

−1,h
. (3.88)
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Now we consider the trilinear terms. Adding and subtracting the appropriate

terms and using the triangle inequality gives∣∣∣∣∣− b (φm,um, Eµ,mh ) + b
(
φm−1
h ,umh , E

µ,m
h

)
+ b (φm, Eu,mh , µm)− b

(
φm−1
h , Eu,mh , µmh

) ∣∣∣∣∣
≤
∣∣b (Eφ,ma ,um, Eµ,mh

)∣∣+
∣∣∣b(Eφ,m−1

h ,um, Eµ,mh

)∣∣∣+ |b (τδτRhφ
m,um, Eµ,mh )|

+
∣∣b (φm−1

h , Eu,ma , Eµ,mh

)∣∣+
∣∣b (Eφ,ma , Eu,mh , µm

)∣∣+
∣∣∣b(Eφ,m−1

h , Eu,mh , µm
)∣∣∣

+ |b (τδτRhφ
m, Eu,mh , µm)|+

∣∣b (φm−1
h , Eu,mh , Eµ,ma

)∣∣ . (3.89)

With the assumption u ∈ L∞ (0, T ; L4(Ω)) we have

∣∣b (Eφ,ma ,um, Eµ,mh

)∣∣ ≤ ∥∥∇Eφ,ma

∥∥
L2 ‖um‖L4 ‖Eµ,mh ‖L4

≤ C
∥∥∇Eφ,ma

∥∥2

L2 +
ε

10
‖∇Eµ,mh ‖2

L2

≤ Ch2q |φm|2Hq+1 +
ε

10
‖∇Eµ,mh ‖2

L2 , (3.90)

as well as

∣∣∣b(Eφ,m−1
h ,um, Eµ,mh

)∣∣∣ ≤ ∥∥∥∇Eφ,m−1
h

∥∥∥
L2
‖um‖L4 ‖Eµ,mh ‖L4

≤ C
∥∥∥∇Eφ,m−1

h

∥∥∥2

L2
+

ε

10
‖∇Eµ,mh ‖2

L2 . (3.91)

Using the stability of the elliptic projection, and reusing estimate (3.84), and u ∈

L∞ (0, T ; L4(Ω))

|b (τδτRhφ
m,um, Eµ,mh )| ≤ ‖∇τδτRhφ

m‖L2 ‖um‖L4 ‖Eµ,mh ‖L4

≤ C ‖τ∇δτRhφ
m‖L2 ‖∇Eµ,mh ‖L2

≤ C ‖τ∇δτφm‖L2 ‖∇Eµ,mh ‖L2

≤ C ‖τ∇δτφm‖2
L2 +

ε

10
‖∇Eµ,mh ‖2

L2

≤ Cτ

∫ t

t−τ
‖∇∂sφ(s)‖2

L2 ds+
ε

10
‖∇Eµ,mh ‖2

L2 . (3.92)
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Using (3.55.3) and the error for the Darcy-Stokes Projection,

∣∣b (φm−1
h , Eu,ma , Eµ,mh

)∣∣ ≤ ∥∥∇φm−1
h

∥∥
L2 ‖Eu,ma ‖L4 ‖Eµ,mh ‖L4

≤ C ‖Eu,ma ‖2
H1 +

ε

10
‖∇Eµ,mh ‖2

L2

≤ Ch2q
(
|um|2Hq+1 + |pm|2Hq

)
+

ε

10
‖∇Eµ,mh ‖2

L2 . (3.93)

Since we assume µ ∈ L∞ (0, T ;H1(Ω)),

∣∣b (Eφ,ma , Eu,mh , µm
)∣∣ ≤ ∥∥∇Eφ,ma

∥∥
L2 ‖Eu,mh ‖L4 ‖µm‖L4

≤ C
∥∥∇Eφ,ma

∥∥
L2 ‖∇Eu,mh ‖L2 ‖µm‖H1

≤ C
∥∥∇Eφ,ma

∥∥2

L2 +
λ

8γ
‖∇Eu,mh ‖2

L2

≤ Ch2q |φm|2Hq+1 +
λ

8γ
‖∇Eu,mh ‖2

L2 , (3.94)

and

∣∣∣b(Eφ,m−1
h , Eu,mh , µm

)∣∣∣ ≤ ∥∥∥∇Eφ,m−1
h

∥∥∥
L2
‖Eu,mh ‖L4 ‖µm‖L4

≤ C
∥∥∥∇Eφ,m−1

h

∥∥∥
L2
‖∇Eu,mh ‖L2 ‖µm‖H1

≤ C
∥∥∥∇Eφ,m−1

h

∥∥∥2

L2
+

λ

8γ
‖∇Eu,mh ‖2

L2 . (3.95)

Again, using µ ∈ L∞ (0, T ;H1(Ω)), the stability of the elliptic projection, and reusing

estimate (3.84)

| b (τδτRhφ
m, Eu,mh , µm)| ≤ ‖∇τδτRhφ

m‖L2 ‖Eu,mh ‖L4 ‖µm‖H1

≤ C ‖τ∇δτRhφ
m‖L2 ‖∇Eu,mh ‖L2

≤ C ‖τ∇δτφm‖L2 ‖∇Eu,mh ‖L2

≤ Cτ

∫ t

t−τ
‖∇∂sφ(s)‖2

L2 ds+
λ

8γ
‖∇Eu,mh ‖2

L2 . (3.96)
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Finally,

∣∣b (φm−1
h , Eu,mh , Eµ,ma

)∣∣ ≤ ∥∥∇φm−1
h

∥∥
L2 ‖Eu,mh ‖L4 ‖Eµ,ma ‖L4

≤ C ‖∇Eu,mh ‖L2 ‖∇Eµ,ma ‖L2

≤ λ

8γ
‖∇Eu,mh ‖2

L2 + C ‖∇Eµ,ma ‖2
L2

≤ λ

8γ
‖∇Eu,mh ‖2

L2 + Ch2q |µm|2Hq+1 . (3.97)

Combining the estimates (3.80) – (3.97) with the error equation (3.72) and using

the triangle inequality, the result follows.

Lemma 3.4.4. Suppose that (φm, µm,um) is a weak solution to (3.68a) – (3.68e),

with the additional regularities (3.67). Then, for any h, τ > 0, there exists a constant

C > 0, independent of h and τ , such that

∥∥∥δτEφ,mh

∥∥∥2

−1,h
≤ 7ε2 ‖∇Eµ,mh ‖2

L2 + C
∥∥∥∇Eφ,m−1

h

∥∥∥2

L2
+ 7C2

2 ‖∇E
u,m
h ‖2

L2 + CR, (3.98)

for any t ∈ (τ, T ], where C2 = C2
0C1, C0 is the H1(Ω) ↪→ L4(Ω) Sobolev embedding

constant, C1 is a bound for max
0≤t≤T

‖∇φmh ‖
2
L2, and R is the consistency term given in

(3.79).
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Proof. Setting ν = Th
(
δτEφ,mh

)
in (3.71a), we have

∥∥∥δτEφ,mh

∥∥∥2

−1,h
= − ε a

(
Eµ,mh ,Th

(
δτEφ,mh

))
+
(
σφ,m1 + σφ,m2 ,Th

(
δτEφ,mh

))
− b

(
φm,um,Th

(
δτEφ,mh

))
+ b
(
φm−1
h ,umh ,Th

(
δτEφ,mh

))
=− ε

(
Eµ,mh , δτEφ,mh

)
+
(
σφ,m1 + σφ,m2 ,Th

(
δτEφ,mh

))
− b

(
Eφ,ma ,um,Th

(
δτEφ,mh

))
− b
(
Eφ,m−1
h ,um,Th

(
δτEφ,mh

))
− b
(
τδτRhφ

m,um,Th
(
δτEφ,mh

))
− b
(
φm−1
h , Eu,ma ,Th

(
δτEφ,mh

))
− b
(
φm−1
h , Eu,mh ,Th

(
δτEφ,mh

))
≤ ε ‖∇Eµ,mh ‖L2

∥∥∥δτEφ,mh

∥∥∥
−1,h

+
∥∥∥σφ,m1 + σφ,m2

∥∥∥
L2

∥∥∥Th (δτEφ,mh

)∥∥∥
L2

+
∥∥∇Eφ,ma

∥∥
L2 ‖um‖L4

∥∥∥Th (δτEφ,mh

)∥∥∥
L4

+
∥∥∥∇Eφ,m−1

h

∥∥∥
L2
‖um‖L4

∥∥∥Th (δτEφ,mh

)∥∥∥
L4

+ ‖τ∇δτRhφ
m‖L2 ‖um‖L4

∥∥∥Th (δτEφ,mh

)∥∥∥
L4

+
∥∥∇φm−1

h

∥∥
L2 ‖Eu,ma ‖L4

∥∥∥Th (δτEφ,mh

)∥∥∥
L4

+
∥∥∇φm−1

h

∥∥
L2 ‖Eu,mh ‖L4

∥∥∥Th (δτEφ,mh

)∥∥∥
L4

≤ 7ε2

2
‖∇Eµ,mh ‖2

L2 +
1

14

∥∥∥δτEφ,mh

∥∥∥2

−1,h
+ C

∥∥∥σφ,m1 + σφ,m2

∥∥∥2

L2

+
1

14

∥∥∥δτEφ,mh

∥∥∥2

−1,h
C +

∥∥∇Eφ,ma

∥∥2

L2 +
1

14

∥∥∥δτEφ,mh

∥∥∥2

−1,h

+ C
∥∥∥∇Eφ,m−1

h

∥∥∥2

L2
+

1

14

∥∥∥δτEφ,mh

∥∥∥2

−1,h
+ Cτ 2 ‖∇δτRhφ

m‖2
L2

+
1

14

∥∥∥δτEφ,mh

∥∥∥2

−1,h
+ C ‖Eu,ma ‖2

L2 +
1

14

∥∥∥δτEφ,mh

∥∥∥2

−1,h

+
7C2

2

2
‖∇Eu,mh ‖2

L2 +
1

14

∥∥∥δτEφ,mh

∥∥∥2

−1,h

≤ 1

2

∥∥∥δτEφ,mh

∥∥∥2

−1,h
+

7ε2

2
‖∇Eµ,mh ‖2

L2 +
7C2

2

2
‖∇Eu,mh ‖2

L2

+ C
∥∥∥∇Eφ,m−1

h

∥∥∥2

L2
+ CR,

where we have used Lemmas 2.2.21 and 3.4.1. The result now follows.
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Lemma 3.4.5. Suppose that (φm, µm,um) is a weak solution to (3.68a) – (3.68e),

with the additional regularities (3.67). Then, for any h, τ > 0, there exists a constant

C > 0, independent of h and τ , such that

‖∇Eµ,mh ‖2
L2 + ‖Eu,mh ‖2

H1 + a
(
Eφ,mh , δτEφ,mh

)
+
(
Eφ,mh , δτEφ,mh

)
−1,h

+ (δτEu,mh , Eu,mh )

≤ C
∥∥∥∇Eφ,mh

∥∥∥2

L2
+ C

∥∥∥∇Eφ,m−1
h

∥∥∥2

L2
+ CR.

(3.99)

Proof. This follows upon combining the last two lemmas and choosing α in (3.78)

appropriately.

Using the last lemma, we are ready to show the main convergence result for our

convex splitting scheme.

Theorem 3.4.6. Suppose (φm, µm,um) is a weak solution to (3.68a) – (3.68e), with

the additional regularities (3.67). Then, provided 0 < τ < τ0, for some τ0 sufficiently

small,

max
1≤m≤M

[∥∥∥∇Eφ,mh

∥∥∥2

L2
+
∥∥∥Eφ,mh

∥∥∥2

−1,h
+ ‖Eu,mh ‖L2

]
+ τ

M∑
m=1

[
‖∇Eµ,mh ‖2

L2 + ‖Eu,mh ‖2
H1 +

∥∥∥δτEφ,mh

∥∥∥2

−1,h

]
≤ C(T )(τ 2 + h2q) (3.100)

for some C(T ) > 0 that is independent of τ and h.

Proof. Setting t = tm and using Lemma 3.4.5 and the arithmetic-geometric mean

inequality, we have

δτ

∥∥∥∇Eφ,mh

∥∥∥2

L2
+ δτ

∥∥∥Eφ,mh

∥∥∥2

−1,h
+ δτ ‖Eu,mh ‖2

L2

+ ‖∇Eµ,mh ‖2
L2 + ‖Eu,mh ‖2

H1 ≤ C
∥∥∥∇Eφ,mh

∥∥∥2

L2
+ C

∥∥∥∇Eφ,m−1
h

∥∥∥2

L2
+ CRm.
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Let 1 < ` ≤M . Applying τ
∑`

m=1 and using Eφ,0h ≡ 0, Eu,0h ≡ 0,

∥∥∥∇Eφ,`h

∥∥∥2

L2
+
∥∥∥Eφ,`h

∥∥∥2

−1,h
+
∥∥∥Eu,`h

∥∥∥2

L2

+τ
∑̀
m=1

[
‖∇Eµ,mh ‖2

L2 + ‖Eu,mh ‖2
H1

]
≤ Cτ

∑̀
m=1

Rm + C1τ
∑̀
m=1

∥∥∥∇Eφ,mh

∥∥∥2

L2
. (3.101)

If 0 < τ ≤ τ0 := 1
2C1

< 1
C1

, it follows from the last estimate that

∥∥∥∇Eφ,`h

∥∥∥2

L2
≤ Cτ

∑̀
m=1

Rm +
C1τ

1− C1τ

`−1∑
m=1

∥∥∥∇Eφ,mh

∥∥∥2

L2

≤ C(τ 2 + h2q) + Cτ
`−1∑
m=1

∥∥∥∇Eφ,mh

∥∥∥2

L2
, (3.102)

where we have used the regularity assumptions to conclude τ
∑M

m=1Rm ≤ C(τ 2+h2q).

Appealing to the discrete Gronwall inequality (2.42), it follows that, for any 1 < ` ≤

M , ∥∥∥∇Eφ,`h

∥∥∥2

L2
≤ C(T )(τ 2 + h2q). (3.103)

Considering estimates (3.101) and (3.103), we get the desired result.

Remark 3.4.7. From here it is straightforward to establish an optimal error estimate

of the form

max
1≤m≤M

[∥∥∇Eφ,m∥∥2

L2 + ‖Eu,m‖2
L2

]
+ τ

M∑
m=1

[
‖∇Eµ,m‖2

L2 + ‖∇Eu,m‖2
L2

]
≤ C(T )(τ 2 + h2q)

(3.104)

using Eφ,m = Eφ,ma + Eφ,mh , et cetera, the triangle inequality, and the standard spatial

approximations. We omit the details for the sake of brevity.
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3.5 Numerical Experiments

In this section, we provide some numerical experiments to gauge the accuracy and

reliability of the fully discrete finite element method developed in the previous

sections. We use a square domain Ω = (0, 1)2 ⊂ R2 and take Th to be a regular

triangulation of Ω consisting of right isosceles triangles. To refine the mesh, we

assume that T`, ` = 0, 1, ..., L, is an hierarchy of nested triangulations of Ω where

T`, is obtained by subdividing the triangles of T`−1 into four congruent sub-triangles.

Note that h`−1 = 2h`, ` = 1, ..., L and that {T`} is a quasi-uniform family. For

the flow problem, we use the inf-sup-stable Taylor-Hood element where the P1 finite

element space is used for the pressure and the [P2]2 finite element space is used for

the velocity. (We use a family of meshes Th such that no triangle in the mesh has

more than one edge on the boundary, as is usually required for the stability of the

Taylor-Hood element [5].) We use the P1 finite element space for the phase field and

chemical potential. In short, we take q = 1.

We solve the scheme (3.7a) – (3.7e) with the following parameters: λ = 1, η = 1,

θ = 0, and ε = 6.25× 10−2. The initial data for the phase field are taken to be

φ0
h = Ih

{
1

2

(
1.0− cos(4.0πx)

)
·
(

1.0− cos(2.0πy)
)
− 1.0

}
, (3.105)

where Ih : H2 (Ω) → Sh is the standard nodal interpolation operator. Recall that

our analysis does not specifically cover the use of the operator Ih in the initialization

step. But, since the error introduced by its use is optimal, a slight modification of

the analysis show that this will lead to optimal rates of convergence overall. (See

Remark 3.3.3.) The initial data for the velocity are taken as u0
h = 0. Values of the

remaining parameters are given in the caption of Table 3.1. To solve the system of

equations above numerically, we are using the finite element libraries from the FEniCS

Project [47]. We solve the fully coupled system by a Picard-type iteration. Namely,

at a given time step we fix the velocity and pressure, then solve for φh, µh, and ξh.
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With these updated, we then solve for the velocity and pressure. This is repeated

until convergence.

Note that source terms are not naturally present in the system of equations (1.4a)

– (1.4f). To get around the fact that we do not have possession of exact solutions, we

measure error by a different means. Specifically, we compute the rate at which the

Cauchy difference, δζ := ζ
Mf

hf
− ζMc

hc
, converges to zero, where hf = 2hc, τf = 2τc, and

τfMf = τcMc = T . Then, using a linear refinement path, i.e., τ = Ch, and assuming

q = 1, we have

‖δζ‖H1 =
∥∥∥ζMf

hf
− ζMc

hc

∥∥∥
H1
≤
∥∥∥ζMf

hf
− ζ(T )

∥∥∥
H1

+
∥∥ζMc

hc
− ζ(T )

∥∥
H1 = O(hqf+τf ) = O(hf ).

(3.106)

The results of the H1 Cauchy error analysis are found in Table 3.1 and confirm

first-order convergence in this case. Additionally, we have proved that (at the

theoretical level) the energy is non-increasing at each time step. This is observed

in our computations and shown below in Figure 3.1.
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Table 3.1: H1 Cauchy convergence test. The final time is T = 4.0× 10−1, and the refinement path
is taken to be τ = .001

√
2h. The other parameters are ε = 6.25 × 10−2; Ω = (0, 1)2. The Cauchy

difference is defined via δφ := φhf
−φhc , where the approximations are evaluated at time t = T , and

analogously for δµ, and δp. Since q = 1, i.e., we use P1 elements for these variables, the norm of the
Cauchy difference at T is expected to be O(τf ) +O (hf ) = O (hf ).

hc hf ‖δφ‖H1 rate ‖δµ‖H1 rate ‖δp‖H1 rate
√

2/8
√

2/16 1.988× 100 – 2.705× 100 – 3.732× 100 –√
2/16

√
2/32 9.149× 10−1 1.09 1.309× 100 1.03 9.73× 10−1 1.92√

2/32
√

2/64 4.483× 10−1 1.02 6.216× 10−1 1.05 9.417× 10−1 1.02√
2/64

√
2/128 2.231× 10−1 1.00 3.056× 10−1 1.02 4.688× 10−1 1.00

Figure 3.1: Energy dissipation for the first order numerical scheme for the Cahn-Hilliard-Darcy-

Stokes problem. All parameters are as listed in Table 3.1 and we have taken h =
√
2

64 .
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Chapter 4

The Numerical Analysis of a

Second-Order Convex Splitting

Scheme for the Cahn-Hilliard

Equation

In Chapter 4, we develope and analyze a second order in time convex splitting

numerical scheme for the Cahn-Hilliard problem. We will begin by setting up a weak

formulation of the problem (1.2a) – (1.2c) and presenting the recent developments on

second order schemes related to the Cahn-Hilliard equation. We then introduce our

new mixed methods numerical scheme and show that the scheme is unconditionally

stable and optimally convergent. We then back up these findings with the results

from a numerical experiment.
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4.1 A Weak Formulation of the Cahn-Hilliard

Equation

A weak formulation of (1.2a) – (1.2c) may be written as follows: find (φ, µ) such that

φ ∈ L∞
(
0, T ;H1(Ω)

)
∩ L4 (0, T ;L∞(Ω)) , (4.1a)

∂tφ ∈ L2
(
0, T ;H−1(Ω)

)
, (4.1b)

µ ∈ L2
(
0, T ;H1(Ω)

)
, (4.1c)

and there hold for almost all t ∈ (0, T )

〈∂tφ, ν〉+ ε a (µ, ν) = 0 ∀ ν ∈ H1(Ω), (4.2a)

(µ, ψ)− ε a (φ, ψ)− ε−1
(
φ3 − φ, ψ

)
= 0 ∀ψ ∈ H1(Ω), (4.2b)

with the “compatible” initial data

φ(0) = φ0 ∈ H2
N(Ω) :=

{
v ∈ H2(Ω)

∣∣ ∂nv = 0 on ∂Ω
}
. (4.3)

We note that the system (4.2a) – (4.2b) may be recovered from the Cahn-Hilliard-

Darcy-Stokes system presented in Chapter 3 by setting γ, θ = 0. Hence, it shares

those properties described in Section 3.3. Specifically, the system (4.2a)–(4.2b) is

mass conservative and the homogeneous Neumann boundary conditions associated

with the phase variables φ and µ are natural in the mixed weak formulation of the

problem. Likewise, weak solutions of (4.2a) – (4.2b) dissipate the energy (1.1) and

the energy law (3.34) simplifies in this setting: for any t ∈ [0, T ],

E(φ(t)) +

∫ t

0

ε ‖∇µ(s)‖2
L2 ds = E(φ0). (4.4)
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The restriction of the equations to the Cahn-Hilliard problem does not affect the

availability of the existence of weak solutions and the method by which this is proven

follows a compactness/energy method shown, for example, in [19].

4.2 The State-of-the-Art on Second-Order

Numerical Schemes for the Cahn-Hilliard

Equation

In general, the analysis of second-order numerical schemes for nonlinear equations can

be significantly more difficult than that for first-order methods [59]. As such, second

order schemes for Cahn-Hilliard type equations have been less commonly investigated.

Nevertheless, such work has been reported in the following articles [4, 8, 14, 15, 26, 55,

57, 65]. We mention, in particular, the secant-type algorithms described in [14, 26].

With the notation Ψ(φ) := 1
4

(φ2 − 1)
2
, the secant scheme of [14] for the Cahn-Hilliard

equation may be formulated as

φn+1 − φn = sε∆µn+ 1
2 , µn+ 1

2 := ε−1 Ψ(φn+1)−Ψ(φn)

φn+1 − φn
− ε

2

(
∆φn+1 −∆φn

)
. (4.5)

This scheme is energy stable. However, it may not be unconditionally uniquely

solvable with respect to the time step size, s. (See [14, 15, 26] for details.) Lack

of unconditional solvability may be problematic as coarsening studies using the Cahn

Hilliard equation may involve very large time scales, requiring potentially very large

time steps for efficiency.

Chen and Shen introduce a semi-implicit Fourier-spectral method in [8] which has

a couple of advantages over explicit Euler finite difference methods. In their scheme,

the high-order semi-implicit treatment in time enables the use of larger time steps

while maintaining higher accuracy. However, even though the time step size may

be taken to be larger, the scheme’s stability is still not completely independent on
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the time step size. Furthermore, although they test their scheme through numerical

simulations, no formal stability or convergence analyses are presented in the paper.

Wu, Zwieten, and Van Der Zee [65] introduce a semi-discrete second-order

convex splitting scheme for Cahn-Hilliard-type equations with applications to diffuse-

interface tumor-growth models. They are able to show unconditional energy stability

relative to the energy norms, mass conservation, and a second order local truncation

error for the phase field parameter. However, they do not prove second order accuracy

relative to the energy norm for the phase field parameter.

In [32], Guo et. al. propose a new second-order-accurate-in-time, finite difference

scheme for the Cahn-Hilliard equation in three dimensions. In their paper, they show

their scheme is uniquely solvable and unconditionally energy stable. Boosting the

basic energy stability estimates leads to a convergence analysis demonstrating that

convergence of their scheme is unconditional with respect to the time and space step

sizes. Following their work, we propose a fully discrete, mixed finite element scheme

for the Cahn-Hilliard problem (1.2a)–(1.2c):

φn+1
h − φnh = s ε∆hµ

n+ 1
2

h , (4.6a)

µ
n+ 1

2
h :=

1

4ε

(
φn+1
h + φnh

) ((
φn+1
h

)2
+ (φnh)2

)
− 1

ε

(
3

2
φnh −

1

2
φn−1
h

)
− ε∆h

(
3

4
φn+1
h +

1

4
φn−1
h

)
, (4.6b)

where ∆h above is a finite difference stencil approximating the Laplacian, and φh

and µh are grid variables. In our finite element version of the scheme, the stability

and solvability statements we prove are completely unconditional with respect to the

time and space step sizes. We are able to achieve unconditional L∞(0, T ;L∞(Ω))

stability for the phase field variable φh and unconditional L∞(0, T ;L2(Ω)) stability

for the chemical potential µh leading to optimal error estimates for φh and µh in the

appropriate energy norms.
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4.3 A Mixed Finite Element Splitting Scheme

4.3.1 Definition of the Scheme

Our mixed second-order splitting scheme is defined as follows: for any 1 ≤ m ≤M−1,

given φmh , φ
m−1
h ∈ Sh, find φm+1

h , µ
m+ 1

2
h ∈ Sh such that

(
δτφ

m+ 1
2

h , ν
)

+ ε a
(
µ
m+ 1

2
h , ν

)
= 0 ∀ ν ∈ Sh, (4.7a)

ε−1
(
χ
(
φm+1
h , φmh

)
, ψ
)
− ε−1

(
φ̃h

m+ 1
2 , ψ

)
+ε a

(
φ̌h

m+ 1
2 , ψ
)
−
(
µ
m+ 1

2
h , ψ

)
= 0 ∀ψ ∈ Sh, (4.7b)

where

δτφ
m+ 1

2
h :=

φm+1
h − φmh

τ
, φ

m+ 1
2

h :=
1

2
φm+1
h +

1

2
φmh , φ̃h

m+ 1
2 :=

3

2
φmh −

1

2
φm−1
h , (4.8)

φ̌h
m+ 1

2 :=
3

4
φm+1
h +

1

4
φm−1
h , χ

(
φm+1
h , φmh

)
:=

1

2

((
φm+1
h

)2
+ (φmh )2

)
φm+ 1

2 . (4.9)

Since this is a multi-step scheme, it requires a separate initialization process. For the

first step, the scheme is as follows: given φ0
h ∈ Sh, find φ1

h, µ
1
2
h ∈ Sh such that

(
δτφ

1
2
h , ν
)

+ ε a
(
µ

1
2
h , ν
)

= 0 ∀ ν ∈ Sh, (4.10a)

ε−1
(
χ
(
φ1
h, φ

0
h

)
, ψ
)
− ε−1

(
φ0
h, ψ
)

+
τ

2
a
(
µ0
h, ψ
)

+ε a
(
φ

1
2
h , ψ

)
−
(
µ

1
2
h , ψ

)
= 0 ∀ψ ∈ Sh, (4.10b)

where φ0
h := Rhφ0, and µ0

h := Rhµ0, such that

µ0 := ε−1
(
φ3

0 − φ0

)
− ε∆φ0. (4.11)
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Remark 4.3.1. The notation for the backwards difference operator has changed

slightly from Chapter 3. The necessity of the notation change is understood through

the definitions of the two schemes.

Theorem 4.3.2. The scheme (4.7a) – (4.7b) coupled with the initial scheme (4.10b)

– (4.10b) is uniquely solvable for any mesh parameters h and τ and for any model

parameters.

Proof. The proof is based on convexity arguments and follows in a similar manner as

that of Theorem 5 from reference [37]. We omit the details for brevity.

Remark 4.3.3. Note that it is not necessary for solvability and some basic energy

stabilities that the µ–space and the φ–space be equal. However, the proofs of the

higher-order stability estimates, in particular the proof in Lemma 4.3.10, do require

the equivalence of these spaces.

Remark 4.3.4. The elliptic projections are used in the initialization for simplicity

in the forthcoming error analysis. However, other (simpler) projections may be used

in the initialization step, as long as they have good approximation properties.

4.3.2 Unconditional Energy Stability

We now show that the solutions to our scheme enjoy stability properties that are

similar to those of the PDE solutions, and moreover, these properties hold regardless

of the sizes of h and τ . The first property, the unconditional energy stability, is a

direct result of the convex decomposition.

Lemma 4.3.5. Let (φ1
h, µ

1
2
h ) ∈ Sh × Sh be the unique solution of the initialization

scheme (4.10a) – (4.10b). Then the following first-step energy stability holds for any

h, τ > 0:

E
(
φ1
h

)
+ τε

∥∥∥∇µ 1
2
h

∥∥∥2

L2
+

1

4ε

∥∥φ1
h − φ0

h

∥∥2

L2 ≤ E
(
φ0
h

)
+
ετ 2

4

∥∥∆hµ
0
h

∥∥2

L2 , (4.12)
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where E(φ) is defined in (1.1).

Proof. Setting ν = τµ
1
2
h in (4.10a) and ψ = τδτφ

1
2
h = φ1

h − φ0
h in (4.10b) yields the

following:

τ
(
δτφ

1
2
h , µ

1
2
h

)
+ τε

∥∥∥∇µ 1
2
h

∥∥∥2

L2
= 0, (4.13)

ε−1
(
χ
(
φ1
h, φ

0
h

)
, φ1

h − φ0
h

)
− ε−1

(
φ0
h, φ

1
h − φ0

h

)
+ ε a

(
φ

1
2
h , φ

1
h − φ0

h

)
+
τ

2
a
(
µ0
h, φ

1
h − φ0

h

)
− τ

(
µ

1
2
h , δτφ

1
2
h

)
= 0. (4.14)

Adding Equations (4.13) and (4.14), using Young’s inequality, and the following

identities

(
χ
(
φ1
h, φ

0
h

)
, φ1

h − φ0
h

)
=

1

4

(∥∥φ1
h

∥∥4

L4 −
∥∥φ0

h

∥∥4

L4

)
, (4.15)(

φ0
h, φ

1
h − φ0

h

)
=

1

2

(∥∥φ1
h

∥∥2

L2 −
∥∥φ0

h

∥∥2

L2 −
∥∥φ1

h − φ0
h

∥∥2

L2

)
, (4.16)

the result is obtained.

We now define a modified energy

F (φ, ψ) := E(φ) +
1

4ε
‖φ− ψ‖2

L2 +
ε

8
‖∇φ−∇ψ‖2

L2 , (4.17)

where E(φ) is defined as above and present a technical lemma for use in the

forthcoming stability analysis.

Lemma 4.3.6. Let (φm+1
h , µ

m+ 1
2

h ) ∈ Sh×Sh be the unique solution of (4.7a) – (4.7b).

Then the following identities holds for any h, τ > 0:

(
χ
(
φm+1
h , φmh

)
− φ̃h

m+ 1
2 , δτφ

m+ 1
2

h

)
=

1

4τ

(∥∥∥(φm+1
h

)2 − 1
∥∥∥2

L2
−
∥∥(φmh )2 − 1

∥∥2

L2

)
+

1

4τ

(∥∥φm+1
h − φmh

∥∥2

L2 −
∥∥φmh − φm−1

h

∥∥2

L2

)
+

1

4τ

∥∥φm+1
h − 2φmh + φm−1

h

∥∥2

L2 (4.18)
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a
(
φ̌h

m+ 1
2 , δτφ

m+ 1
2

h

)
=

1

2τ

(∥∥∇φm+1
h

∥∥2

L2 − ‖∇φmh ‖
2
L2

)
+

1

8τ

(∥∥∇φm+1
h −∇φmh

∥∥2

L2 −
∥∥∇φmh −∇φm−1

h

∥∥2

L2

)
+

1

8τ

∥∥∇φm+1
h − 2∇φmh +∇φm−1

h

∥∥2

L2 . (4.19)

Proof. To prove (4.18), we use the definitions of χ(φm+1
h , φmh ) and φ̃h

m+ 1
2 and expand

as follows,

(
χ
(
φm+1
h , φmh

)
− φ̃h

m+ 1
2 , δτφ

m+ 1
2

h

)
=

1

4τ

((
φm+1
h

)2
+ (φmh )2 ,

(
φm+1
h

)2 − (φmh )2
)
− 1

τ

(
3

2
φmh −

1

2
φm−1
h , φm+1

h − φmh
)

=
1

4τ

((
φm+1
h

)2
+ (φmh )2 ,

(
φm+1
h

)2 − (φmh )2
)
− 1

2τ

(
φm+1
h + φmh , φ

m+1
h − φmh

)
+

1

2τ

(
φm+1
h − 2φmh + φm−1

h , φm+1
h − φmh

)
=

1

4τ

(∥∥∥(φm+1
h

)2
∥∥∥2

L2
− ‖(φmh )‖2

L2

)
− 1

2τ

(∥∥φm+1
h

∥∥2

L2 − ‖φmh ‖
2
L2

)
+

1

4τ

(∥∥φm+1
h − φmh

∥∥2

L2 −
∥∥φmh − φm−1

h

∥∥2

L2

)
+

1

4τ

∥∥φm+1
h − 2φmh + φm−1

h

∥∥2

L2

=
1

4τ

[(∥∥∥(φm+1
h

)2
∥∥∥2

L2
− 2

∥∥φm+1
h

∥∥2

L2 + 1

)
−
(∥∥(φmh )2

∥∥2

L2 − 2 ‖φmh ‖
2
L2 + 1

)]
+

1

4τ

(∥∥φm+1
h − φmh

∥∥2

L2 −
∥∥φmh − φm−1

h

∥∥2

L2

)
+

1

4τ

∥∥φm+1
h − 2φmh + φm−1

h

∥∥2

L2

=
1

4τ

(∥∥∥(φm+1
h

)2 − 1
∥∥∥2

L2
−
∥∥(φmh )2 − 1

∥∥2

L2

)
+

1

4τ

(∥∥φm+1
h − φmh

∥∥2

L2 −
∥∥φmh − φm−1

h

∥∥2

L2

)
+

1

4τ

∥∥φm+1
h − 2φmh + φm−1

h

∥∥2

L2 .
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To prove (4.19), we use the definitions of φ̌h
m+ 1

2 and δτφ
m+ 1

2
h and expand as follows,

a
(
φ̌h

m+ 1
2 , δτφ

m+ 1
2

h

)
=

1

τ
a

(
3

4
φm+1
h +

1

4
φm−1
h , φm+1

h − φmh
)

=
1

τ
a

(
1

2
φm+1
h +

1

2
φmh +

1

4
φm+1
h − 1

2
φmh +

1

4
φm−1
h , φm+1

h − φmh
)

=
1

2τ

(∥∥∇φm+1
h

∥∥2

L2 − ‖∇φmh ‖
2
L2

)
+

1

4τ

((
∇φm+1

h −∇φmh
)
−
(
∇φmh −∇φm−1

h

)
,∇φm+1

h −∇φmh
)

=
1

2τ

(∥∥∇φm+1
h

∥∥2

L2 − ‖∇φmh ‖
2
L2

)
+

1

8τ

(∥∥∇φm+1
h −∇φmh

∥∥2

L2 −
∥∥∇φmh −∇φm−1

h

∥∥2

L2

)
+

1

8τ

∥∥∇φm+1
h − 2∇φmh +∇φm−1

h

∥∥2

L2 .

We are now in position to show that our second-order (in time) mixed finite

element splitting scheme is unconditionally energy stable.

Lemma 4.3.7. Let (φm+1
h , µ

m+ 1
2

h ) ∈ Sh×Sh be the unique solution of (4.7a) – (4.7b),

and (φ1
h, µ

1
2
h ) ∈ Sh × Sh, the unique solution of (4.10a) – (4.10b). Then the following

energy law holds for any h, τ > 0:

F
(
φ`+1
h , φ`h

)
+ τε

∑̀
m=1

∥∥∥∇µm+ 1
2

h

∥∥∥2

L2
+
∑̀
m=1

[
1

4ε

∥∥φm+1
h − 2φmh + φm−1

h

∥∥2

L2

+
ε

8

∥∥∇φm+1
h − 2∇φmh +∇φm−1

h

∥∥2

L2

]
= F

(
φ1
h, φ

0
h

)
,

(4.20)

for all 1 ≤ ` ≤M − 1.
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Proof. Setting ν = µ
m+ 1

2
h in (4.7a) and ψ = δτφ

m+ 1
2

h in (4.7b) gives

(
δτφ

m+ 1
2

h , µ
m+ 1

2
h

)
+ ε

∥∥∥∇µm+ 1
2

h

∥∥∥2

L2
= 0, (4.21)

ε−1
(
χ
(
φm+1
h , φmh

)
, δτφ

m+ 1
2

h

)
− ε−1

(
φ̃h

m+ 1
2 , δτφ

m+ 1
2

h

)
+ ε a

(
φ̌h

m+ 1
2 , δτφ

m+ 1
2

h

)
−
(
µ
m+ 1

2
h , δτφ

m+ 1
2

h

)
= 0. (4.22)

Combining (4.21) – (4.22), using the identities from Lemma 4.3.6, and applying the

operator τ
∑`

m=1 to the combined equation, results in (4.20).

For the remainder of the chapter, we will make the following stability assumptions

for the initial data:

E
(
φ0
h

)
+ τ 2

∥∥∆hµ
0
h

∥∥2

L2 +
∥∥∆hφ

0
h

∥∥2

L2 ≤ C, (4.23)

for some constant C > 0 that is independent of h and τ . Here we assume that ε > 0

is fixed. In fact, from this point in the stability and error analyses, we will not track

the dependence of the estimates on the interface parameter ε, though this may be of

importance, especially if ε tends to zero.
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Lemma 4.3.8. Let (φm+1
h , µ

m+ 1
2

h ) ∈ Sh×Sh be the unique solution of (4.7a) – (4.7b),

and (φ1
h, µ

1
2
h ) ∈ Sh × Sh, the unique solution of (4.10a) – (4.10b). Then the following

estimates hold for any h, τ > 0:

max
0≤m≤M

[
‖∇φmh ‖

2
L2 +

∥∥(φmh )2 − 1
∥∥2

L2

]
≤ C, (4.24)

max
0≤m≤M

[
‖φmh ‖

4
L4 + ‖φmh ‖

2
L2 + ‖φmh ‖

2
H1

]
≤ C, (4.25)

max
1≤m≤M

[∥∥φmh − φm−1
h

∥∥2

L2 +
∥∥∇φmh −∇φm−1

h

∥∥2

L2

]
≤ C, (4.26)

τ

M−1∑
m=0

∥∥∥∇µm+ 1
2

h

∥∥∥2

L2
≤ C, (4.27)

M−1∑
m=1

[∥∥φm+1
h − 2φmh + φm−1

h

∥∥2

L2 +
∥∥∇φm+1

h − 2∇φmh +∇φm−1
h

∥∥2

L2

]
≤ C, (4.28)

for some constant C > 0 that is independent of h, τ , and T .

Proof. Starting with the stability of the initial step, inequality (4.12), and considering

the stability of the initial data, inequality (4.23), we immediately have

∥∥∇φ1
h

∥∥2

L2 +
∥∥∥(φ1

h

)2 − 1
∥∥∥2

L2
+
∥∥φ1

h

∥∥4

L4 +
∥∥φ1

h

∥∥2

L2 +
∥∥φ1

h

∥∥2

H1 + τ
∥∥∥∇µ 1

2
h

∥∥∥2

L2
≤ C. (4.29)

The triangle inequality immediately implies

F
(
φ1
h, φ

0
h

)
= E(φ1

h) +
1

4ε

∥∥φ1
h − φ0

h

∥∥2

L2 +
ε

8

∥∥∇φ1
h −∇φ0

h

∥∥2

L2 ≤ C.

This, together with (4.20) and the fact that F (φm+1
h , φmh ) ≥ E(φm+1

h ), for all 0 ≤ m ≤

M − 1, establishes all of the inequalities.

We are able to prove the next set of a priori stability estimates without any

restrictions on h and τ . See 2.2.21 for a definition of discrete negative norm ‖ · ‖−1,h.
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Lemma 4.3.9. Let (φm+1
h , µ

m+ 1
2

h ) ∈ Sh×Sh be the unique solution of (4.7a) – (4.7b),

and (φ1
h, µ

1
2
h ) ∈ Sh × Sh, the unique solution of (4.10a) – (4.10b). Then the following

estimates hold for any h, τ > 0:

τ
M−1∑
m=0

[∥∥∥δτφm+ 1
2

h

∥∥∥2

H−1
+
∥∥∥δτφm+ 1

2
h

∥∥∥2

−1,h

]
≤ C, (4.30)

τ
M−1∑
m=0

∥∥∥µm+ 1
2

h

∥∥∥2

L2
≤ C(T + 1), (4.31)

τ
M−1∑
m=1

[∥∥∥∆hφ̌h
m+ 1

2

∥∥∥2

L2
+
∥∥∥φ̌hm+ 1

2

∥∥∥ 4(6−d)
d

L∞

]
≤ C(T + 1), (4.32)

for some constant C > 0 that is independent of h, τ , and T .

Proof. Let Qh : L2(Ω)→ Sh be the L2 projection, i.e., (Qhν − ν, ξ) = 0 for all ξ ∈ Sh.

Suppose ν ∈ H̊1(Ω). Then, by (4.7a) and (4.10a), for all 0 < m < M − 1

(
δτφ

m+ 1
2

h , ν
)

=
(
δτφ

m+ 1
2

h ,Qhν
)

= −ε
(
∇µm+ 1

2
h ,∇Qhν

)
≤ ε

∥∥∥∇µm+ 1
2

h

∥∥∥
L2
‖∇Qhν‖L2

≤ Cε
∥∥∥∇µm+ 1

2
h

∥∥∥
L2
‖∇ν‖L2 , (4.33)

where we used the H1 stability of the L2 projection in the last step. Applying τ
∑M−1

m=0

and using (4.27), we obtain (4.30.1) – which, in our notation, is the bound on the

first term of the left side of (4.30). The estimate (4.30.2) follows from the inequality

‖ν‖−1,h ≤ ‖ν‖H−1 , which holds for all ν ∈ S̊h.
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To prove (4.31), for 1 ≤ m ≤M − 1 we set ψ = µ
m+ 1

2
h in (4.7b) to obtain

∥∥∥µm+ 1
2

h

∥∥∥2

L2
= ε−1

(
χ
(
φm+1
h , φmh

)
, µ

m+ 1
2

h

)
− ε−1

(
φ̃h

m+ 1
2 , µ

m+ 1
2

h

)
+ ε a

(
φ̌h

m+ 1
2 , µ

m+ 1
2

h

)
≤C

∥∥χ (φm+1
h , φmh

)∥∥2

L2 +
1

4

∥∥∥µm+ 1
2

h

∥∥∥2

L2
+ C

∥∥∥∥φ̃hm+ 1
2

∥∥∥∥2

L2

+
1

4

∥∥∥µm+ 1
2

h

∥∥∥2

L2

+ C
∥∥∥∇φ̌hm+ 1

2

∥∥∥2

L2
+

1

2

∥∥∥∇µm+ 1
2

h

∥∥∥2

L2
.

And, similarly, setting ψ = µ
1
2
h in (4.10b), we have

∥∥∥µ 1
2
h

∥∥∥2

L2
≤C

∥∥χ (φ1
h, φ

0
h

)∥∥2

L2 +
1

6

∥∥∥µ 1
2
h

∥∥∥2

L2
+ C

∥∥φ0
h

∥∥2

L2 +
1

6

∥∥∥µ 1
2
h

∥∥∥2

L2
+ C

∥∥∥∇φ 1
2
h

∥∥∥2

L2

+
1

2

∥∥∥∇µ 1
2
h

∥∥∥2

L2
+

1

6

∥∥∥µ 1
2
h

∥∥∥2

L2
+ Cτ 2

∥∥∆hµ
0
h

∥∥2

L2 .

Hence, using the triangle inequality, (4.25), and the initial stability (4.23), we have

for all 0 ≤ m ≤M − 1,

1

2

∥∥∥µm+ 1
2

h

∥∥∥2

L2
≤C

∥∥χ (φm+1
h , φmh

)∥∥2

L2 +
1

2

∥∥∥∇µm+ 1
2

h

∥∥∥2

L2
+ C.

Now, using Lemma 4.3.8, we have the following bound for all 0 ≤ m ≤M − 1

∥∥χ (φm+1
h , φmh

)∥∥2

L2 =
1

16

∥∥∥(φm+1
h

)3
+
(
φm+1
h

)2
φmh + φm+1

h (φmh )2 + (φmh )3
∥∥∥2

L2

≤C
∥∥∥(φm+1

h

)3
∥∥∥2

L2
+ C

∥∥∥(φm+1
h

)2
φmh

∥∥∥2

L2

+ C
∥∥φm+1

h (φmh )2
∥∥2

L2 + C
∥∥(φmh )3

∥∥2

L2

≤C
∥∥φm+1

h

∥∥6

L6 + C ‖φmh ‖
6
L6 ≤ C

∥∥φm+1
h

∥∥6

H1 + C ‖φmh ‖
6
H1

≤C, (4.34)

where we used Young’s inequality and the embedding H1(Ω) ↪→ L6(Ω), for d = 2, 3.

Hence, ∥∥∥µm+ 1
2

h

∥∥∥2

L2
≤
∥∥∥∇µm+ 1

2
h

∥∥∥2

L2
+ C. (4.35)
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Applying τ
∑M−1

m=0 , estimate (4.31) now follows from (4.27).

Setting ψh = ∆hφ̌h
m+ 1

2 in (4.7b) and using the definition of the discrete Laplacian

2.2.16, it follows that for all 1 ≤ m ≤M − 1

ε
∥∥∥∆hφ̌h

m+ 1
2

∥∥∥2

L2
= − ε a

(
φ̌h

m+ 1
2 ,∆hφ̌h

m+ 1
2

)
= −

(
µ
m+ 1

2
h ,∆hφ̌h

m+ 1
2

)
− ε−1

(
φ̃h

m+ 1
2 ,∆hφ̌h

m+ 1
2

)
+ ε−1

(
χ
(
φm+1
h , φmh

)
,∆hφ̌h

m+ 1
2

)
= a

(
µ
m+ 1

2
h , φ̌h

m+ 1
2

)
− ε−1

(
φ̃h

m+ 1
2 ,∆hφ̌h

m+ 1
2

)
+ ε−1

(
χ
(
φm+1
h , φmh

)
,∆hφ̌h

m+ 1
2

)
≤ 1

2

∥∥∥∇µm+ 1
2

h

∥∥∥2

L2
+

1

2

∥∥∥∇φ̌hm+ 1
2

∥∥∥2

L2
+ C

∥∥∥∥φ̃hm+ 1
2

∥∥∥∥2

L2

+
ε

4

∥∥∥∆hφ̌h
m+ 1

2

∥∥∥2

L2

+ C
∥∥χ (φm+1

h , φmh
)∥∥2

L2 +
ε

4

∥∥∥∆hφ̌h
m+ 1

2

∥∥∥2

L2
.

Using the triangle inequality, (4.25), and (4.34), we have

ε
∥∥∥∆hφ̌h

m+ 1
2

∥∥∥2

L2
≤
∥∥∥∇µm+ 1

2
h

∥∥∥2

L2
+ C. (4.36)

Applying τ
∑M−1

m=1 , estimate (4.32.1) now follows from (4.27).

To prove estimate (4.32.2), we use the discrete Gagliardo-Nirenberg inequality

2.2.24 to obtain,

∥∥∥φ̌hm+ 1
2

∥∥∥ 4(6−d)
d

L∞
≤ C

∥∥∥∆hφ̌h
m+ 1

2

∥∥∥2

L2

∥∥∥φ̌hm+ 1
2

∥∥∥ 6(4−d)
d

L6
+ C

∥∥∥φ̌hm+ 1
2

∥∥∥ 4(6−d)
d

L6
, for d = 2, 3.

(4.37)

Applying τ
∑M−1

m=1 and using H1(Ω) ↪→ L6(Ω), (4.25), and (4.32.1), estimate (4.32.2)

follows.
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Lemma 4.3.10. Let (φm+1
h , µ

m+ 1
2

h ) ∈ Sh × Sh be the unique solution of (4.7a) –

(4.7b), and (φ1
h, µ

1
2
h ) ∈ Sh×Sh, the unique solution of (4.10a) – (4.10b). Assume that

‖µ0
h‖

2
L2 ≤ C, independent of h. Then the following estimates hold for any h, τ > 0:

τ

M−1∑
m=0

∥∥∥δτφm+ 1
2

h

∥∥∥2

L2
≤ C(T + 1), (4.38)

max
0≤m≤M−1

∥∥∥µm+ 1
2

h

∥∥∥2

L2
≤ C(T + 1), (4.39)

for some constant C > 0 that is independent of h, τ , and T .

Proof. The proof is divided into three parts.

Part 1: We first establish

∥∥∥µ 1
2
h

∥∥∥2

L2
+ τ

∥∥∥δτφ 1
2
h

∥∥∥2

L2
≤ C. (4.40)

To this end, setting ν = τδτφ
1
2
h in (4.10a) and ψ = 2µ

1
2
h in (4.10b) and adding the

resulting equations, we have

2
∥∥∥µ 1

2
h

∥∥∥2

L2
+ τ

∥∥∥δτφ 1
2
h

∥∥∥2

L2
=

2

ε

(
χ
(
φ1
h, φ

0
h

)
, µ

1
2
h

)
− 2

ε

(
φ0
h, µ

1
2
h

)
− τ

(
∆hµ

0
h, µ

1
2
h

)
− 2ε

(
∆hφ

0
h, µ

1
2
h

)
≤
∥∥∥µ 1

2
h

∥∥∥2

L2
+ C

∥∥χ (φ1
h, φ

0
h

)∥∥2

L2 + C
∥∥φ0

h

∥∥2

L2

+ C τ 2
∥∥∆hµ

0
h

∥∥2

L2 + C
∥∥∆hφ

0
h

∥∥2

L2 .

Thus,

∥∥∥µ 1
2
h

∥∥∥2

L2
+ τ

∥∥∥δτφ 1
2
h

∥∥∥2

L2
≤ C, (4.41)

considering the initial stability (4.23), (4.25), and (4.34).
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Part 2: Next we prove that

∥∥∥µ 3
2
h

∥∥∥2

L2
+ τ

∥∥∥δτφ 3
2
h

∥∥∥2

L2
≤ C. (4.42)

Setting m = 1 in (4.7b) and subtracting (4.10b), we obtain

(
µ

3
2
h − µ

1
2
h , ψ

)
= ε a

(
φ̌h

3
2 − φ

1
2
h , ψ

)
− 3

2ε

(
φ1
h − φ0

h, ψ
)
− τ

2
a
(
µ0
h, ψ
)

+ ε−1
(
χ
(
φ2
h, φ

1
h

)
− χ

(
φ1
h, φ

0
h

)
, ψ
)

(4.43)

= ε a

(
3

4
τδτφ

3
2
h +

1

4
τδτφ

1
2
h , ψ

)
− 3

2ε

(
φ1
h − φ0

h, ψ
)
− τ

2
a
(
µ0
h, ψ
)

+ ε−1
(
χ
(
φ2
h, φ

1
h

)
− χ

(
φ1
h, φ

0
h

)
, ψ
)
. (4.44)

Additionally, we take a weighted average of (4.7a) with m = 1 and (4.10a) with the

weights 3
4

and 1
4
, respectively, to obtain,

(
3

4
δτφ

3
2
h +

1

4
δτφ

1
2
h , ν

)
= −ε a

(
3

4
µ

3
2
h +

1

4
µ

1
2
h , ν

)
, ∀ ν ∈ Sh. (4.45)
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Taking ψ = 3
4
µ

3
2
h + 1

4
µ

1
2
h in (4.44), ν = 3τ

4
δτφ

3
2
h + τ

4
δτφ

1
2
h in (4.45), and adding the results

yields

(
µ

3
2
h − µ

1
2
h ,

3

4
µ

3
2
h +

1

4
µ

1
2
h

)
+ τ

∥∥∥∥3

4
δτφ

3
2
h +

1

4
δτφ

1
2
h

∥∥∥∥2
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= − 3

8ε

(
φ1
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h, 3µ
3
2
h + µ

1
2
h

)
− τ

8ε
a
(
µ0
h, 3µ

3
2
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1
2
h

)
+

1

4ε

(
χ
(
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h, φ

1
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)
− χ

(
φ1
h, φ

0
h

)
, 3µ

3
2
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1
2
h

)
= − 3

8ε

(
φ1
h − φ0

h, 3µ
3
2
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1
2
h

)
+

τ

8ε

(
∆hµ

0
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2
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1
2
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)
+

1
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(
χ
(
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h, φ

1
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)
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(
φ1
h, φ

0
h

)
, 3µ

3
2
h + µ

1
2
h

)
≤ 1

4

∥∥∥µ 3
2
h

∥∥∥2

L2
+ C

∥∥∥µ 1
2
h

∥∥∥2

L2
+ C
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∥∥2
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h
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0
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∥∥χ (φ2
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1
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0
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4

∥∥∥µ 3
2
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L2
+ C

∥∥∥µ 1
2
h
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L2
+ C,

where we have used Young’s inequality, (4.23), (4.25), and (4.34). Considering Part

1 and the inequalities∥∥∥∥3

4
δτφ

3
2
h +

1

4
δτφ

1
2
h

∥∥∥∥2
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=
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2
h

∥∥∥2
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+
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2
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2
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8
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8
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,

and

(
µ

3
2
h − µ

1
2
h ,

3

4
µ

3
2
h +

1

4
µ

1
2
h

)
=

3

4

∥∥∥µ 3
2
h

∥∥∥2
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− 1
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(
µ

3
2
h , µ

1
2
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− 1

4

∥∥∥µ 1
2
h

∥∥∥2

L2

≥1

2

∥∥∥µ 3
2
h

∥∥∥2

L2
− 1

2

∥∥∥µ 1
2
h

∥∥∥2

L2
,
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we have,

1

4

∥∥∥µ 3
2
h

∥∥∥2

L2
+

3τ

8

∥∥∥δτφ 3
2
h

∥∥∥2

L2
≤ C

∥∥∥µ 1
2
h

∥∥∥2

L2
+
τ

8

∥∥∥δτφ 1
2
h

∥∥∥2

L2
+ C ≤ C. (4.46)

Part 3: Finally, we will establish

∥∥∥µ`+ 1
2

h

∥∥∥2

L2
+
τ

8

∑̀
m=2

∥∥∥δτφm+ 1
2

h

∥∥∥2

L2
≤ C(T + 1). (4.47)

For 2 ≤ m ≤M−1, we subtract (4.7b) from itself at consecutive time steps to obtain

(
µ
m+ 1

2
h − µm−

1
2

h , ψ
)

= ε a
(
φ̌h

m+ 1
2 − φ̌h

m− 1
2 , ψ
)
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2 , ψ

)
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χ
(
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)
, ψ
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(
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4
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2
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2
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2
τδτφ

m− 3
2

h , ψ
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+

1

4ε

(
ωmh
(
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h − φm−1

h

)
, ψ
)
, (4.48)

for all ψ ∈ Sh, where ωmh := ω
(
φm+1
h , φmh , φ

m−1
h

)
and

ω (a, b, c) := a2 + b2 + c2 + ab+ bc+ ac.

Additionally, we take a weighted average of the m+ 1
2

and m− 3
2

time steps with the

weights 3
4

and 1
4
, respectively, of (4.7a) to obtain,

(
3

4
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2

h +
1

4
δτφ
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3

4
µ
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1
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µ
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2
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)
, (4.49)
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for all ν ∈ Sh, which is well-defined for all 2 ≤ m ≤M−1. Taking ψ = 3
4
µ
m+ 1

2
h + 1

4
µ
m− 3

2
h

in (4.48), ν = τ
(

3
4
δτφ
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2
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4
δτφ
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2
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)
in (4.49), and adding the results yields
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2
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Hence,
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µ
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h ,
3

4
µ
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4
µ
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2
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∥∥∥∥2
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,
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where we use the H1(Ω) ↪→ L6(Ω) embedding to achieve following bound,

‖ωmh ‖L3 =
∥∥∥(φm+1

h

)2
+ (φmh )2 +

(
φm−1
h

)2
+ φm+1

h φmh + φm+1
h φm−1
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∥∥∥
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h

∥∥2
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L6 ≤ C.

Applying
∑`

m=2 and using the following properties
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=
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+
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∥∥∥δτφm+ 1
2

h

∥∥∥2

L2
− 1

8

∥∥∥δτφm− 3
2

h

∥∥∥2

L2
,

we conclude

1

2

∥∥∥µ`+ 1
2

h

∥∥∥2

L2
+

τ

16

∑̀
m=2

∥∥∥δτφm+ 1
2

h

∥∥∥2

L2
≤ 1

8

∥∥∥µ 3
2
h − µ

1
2
h

∥∥∥2

L2
+

3τ

16

∥∥∥δτφ 3
2
h

∥∥∥2

L2
+

1

2

∥∥∥µ 3
2
h

∥∥∥2

L2

+
5τ

32

∥∥∥δτφ 1
2
h

∥∥∥2

L2
+ Cτ

∑̀
m=0

∥∥∥µm+ 1
2

h

∥∥∥2

H1
≤ C(T + 1),
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for any 2 ≤ ` ≤ M − 1, where we have used Parts 1 and 2 and estimates (4.27) and

(4.31). The proof is completed by combining all three parts.

Lemma 4.3.11. Let (φm+1
h , µ

m+ 1
2

h ) ∈ Sh×Sh be the unique solution of (4.7a) – (4.7b),

and (φ1
h, µ

1
2
h ) ∈ Sh × Sh, the unique solution of (4.10a) – (4.10b). Then the following

estimates hold for any h, τ > 0:

∥∥∥∆hφ
1
2
h

∥∥∥2

L2
+
∥∥∥φ 1

2
h

∥∥∥2

L∞
≤ C, (4.50)

max
1≤m≤M−1

[ ∥∥∥∆hφ̌h
m+ 1

2

∥∥∥2

L2
+
∥∥∥φ̌hm+ 1

2

∥∥∥ 4(6−d)
d

L∞

]
≤ C(T + 1), (4.51)

for some constant C > 0 that is independent of h, τ , and T .

Proof. To prove (4.50.1), set ψ = ∆hφ
1
2
h in (4.10b) and use the definition of the

discrete Laplacian 2.2.16 to obtain

ε
∥∥∥∆hφ

1
2
h

∥∥∥2

L2
= − ε a

(
φ

1
2
h ,∆hφ

1
2
h

)
= ε−1

(
χ
(
φ1
h, φ

0
h

)
− φ0

h,∆hφ
1
2
h

)
−
(
µ

1
2
h ,∆hφ

1
2
h

)
+
τ

2
a
(
µ0
h,∆hφ

1
2
h

)
≤ ε

2

∥∥∥∆hφ
1
2
h

∥∥∥2

L2
+ C

(∥∥χ (φ1
h, φ

0
h

)∥∥2

L2 +
∥∥φ0

h

∥∥2

L2 +
∥∥∥µ 1

2
h

∥∥∥2

L2
+ τ 2

∥∥∆hµ
0
h

∥∥2

L2

)
≤ ε

2

∥∥∥∆hφ
1
2
h

∥∥∥2

L2
+ C.

The result now follows. Estimate (4.50.2) follows from (4.37), the embedding

H1(Ω) ↪→ L6(Ω), (4.25), and (4.50.1).
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Setting ψ = ∆hφ̌h
m+ 1

2 in (4.7b) and using the definition of the discrete Laplacian

2.2.16, we get

ε
∥∥∥∆hφ̌h

m+ 1
2

∥∥∥2

L2
= − ε a

(
φ̌h

m+ 1
2 ,∆hφ̌h

m+ 1
2

)
= −

(
µ
m+ 1

2
h ,∆hφ̌h

m+ 1
2

)
− ε−1

(
φ̃h

m+ 1
2 ,∆hφ̌h

m+ 1
2

)
+ ε−1

(
χ
(
φm+1
h , φmh

)
,∆hφ̌h

m+ 1
2

)
≤C

∥∥∥µm+ 1
2

h

∥∥∥2

L2
+
ε

2

∥∥∥∆hφ̌h
m+ 1

2

∥∥∥2

L2
+ C

∥∥∥∥φ̃hm+ 1
2

∥∥∥∥2

L2

+ C
∥∥χ (φm+1

h , φmh
)∥∥2

L2

≤C + C
∥∥∥µm+ 1

2
h

∥∥∥2

L2
+
ε

2

∥∥∥∆hφ̌h
m+ 1

2

∥∥∥2

L2
,

where we have used the triangle inequality and (4.34). Hence,
∥∥∥∆hφ̌h

m+ 1
2

∥∥∥2

L2
≤

C + C
∥∥∥µm+ 1

2
h

∥∥∥2

L2
, for 1 ≤ m ≤ M − 1, and estimate (4.51.1) follows from (4.39).

Estimate (4.51.2) follows from (4.37), the embedding H1(Ω) ↪→ L6(Ω), (4.25), and

(4.51.1).

Lemma 4.3.12. Let (φm+1
h , µ

m+ 1
2

h ) ∈ Sh×Sh be the unique solution of (4.7a) – (4.7b),

and (φ1
h, µ

1
2
h ) ∈ Sh × Sh, the unique solution of (4.10a) – (4.10b). The following

estimates hold for any h, τ > 0:

max
0≤m≤M

[
‖∆hφ

m
h ‖

2
L2 + ‖φmh ‖

4(6−d)
d

L∞

]
≤ C(T + 1), (4.52)

for some constant C > 0 that is independent of h, τ , and T .

Proof. We begin by proving the stability for the first time step. A simple application

of the triangle inequality gives (4.52.1) for m = 1 as follows,

∥∥∆hφ
1
h

∥∥
L2 =

∥∥∆hφ
1
h + ∆hφ

0
h −∆hφ

0
h

∥∥
L2 ≤

∥∥∆hφ
1
h + ∆hφ

0
h

∥∥
L2 +

∥∥∆hφ
0
h

∥∥
L2

≤ 2
∥∥∥∆hφ

1
2
h

∥∥∥
L2

+
∥∥∆hφ

0
h

∥∥
L2 ≤ C,
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where we have used the stability of the initial data, inequality (4.23), and (4.50.1).

Next, using (4.37), H1(Ω) ↪→ L6(Ω), (4.25), and (4.52.1), we arrive at (4.52.2) for

m = 1. For 2 ≤ m ≤M − 1, by definition,

∥∥∥∆hφ̌h
m+ 1

2

∥∥∥2

L2
=

∥∥∥∥∆h

(
3

4
φm+1
h +

1

4
φm−1
h

)∥∥∥∥2

L2

=
1

16

(
9
∥∥∆hφ

m+1
h

∥∥2

L2 + 6
(
∆hφ

m+1
h ,∆hφ

m−1
h

)
+
∥∥∆hφ

m−1
h

∥∥2

L2

)
≥ 1

16

(
9
∥∥∆hφ

m+1
h

∥∥2

L2 − 3
∥∥∆hφ

m+1
h

∥∥2

L2 − 3
∥∥∆hφ

m−1
h

∥∥2

L2 +
∥∥∆hφ

m−1
h

∥∥2

L2

)
=

3

8

∥∥∆hφ
m+1
h

∥∥2

L2 −
1

8

∥∥∆hφ
m−1
h

∥∥2

L2 .

Using induction and estimate (4.51.1), we find

∥∥∆hφ
2m
h

∥∥2

L2 ≤
8

3

(
1 +

1

3
+

(
1

3

)2

+ · · ·+
(

1

3

)m−1
)
C(T + 1) +

(
1

3

)m ∥∥∆hφ
0
h

∥∥2

L2

≤ 8

3
· 3

2
C(T + 1) +

(
1

3

)m
· C ≤ C(T + 1),

and

∥∥∆hφ
2m+1
h

∥∥2

L2 ≤
8

3

(
1 +

1

3
+

(
1

3

)2

+ · · ·+
(

1

3

)m−1
)
C(T + 1) +

(
1

3

)m ∥∥∆hφ
1
h

∥∥2

L2

≤ 8

3
· 3

2
C(T + 1) +

(
1

3

)m
· C ≤ C(T + 1),

and estimate (4.52.1) follows. Estimate (4.52.2) follows from (4.37), (4.52.1), and the

embedding H1(Ω) ↪→ L6(Ω).

4.4 Error Estimates for the Fully Discrete Convex

Splitting Scheme

In this section, we provide a rigorous convergence analysis for our scheme in the

appropriate energy norms. We shall assume that weak solutions have the additional
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regularities

φ ∈ L∞
(
0, T ;W 1,6(Ω)

)
∩H1

(
0, T ;Hq+1(Ω)

)
∩H2(0, T ;H3(Ω)) ∩H3(0, T ;L2(Ω)),

φ2 ∈ H2
(
0, T ;H1(Ω)

)
, (4.53)

µ ∈ L2
(
0, T ;Hq+1(Ω)

)
,

where q ≥ 1. The norm bounds associated to the assumed regularities above are not

necessarily global-in-time and therefore can involve constants that depend upon the

final time T . We also assume that the initial data are sufficiently regular so that

the stability (4.23) holds. Weak solutions (φ, µ) to (4.2a) - (4.2b) with the higher

regularities (4.53) solve the following variational problem: for all t ∈ [0, T ],

(∂tφ, ν) + ε a (µ, ν) = 0 ∀ ν ∈ H1(Ω), (4.54a)

(µ, ψ)− ε a (φ, ψ)− ε−1
(
φ3 − φ, ψ

)
= 0 ∀ ψ ∈ H1(Ω). (4.54b)

We define the following: for any real number m ∈ [0,M ],

tm := mτ, φm := φ(tm), Eφ,ma := φm −Rhφ
m, Eµ,ma := µm −Rhµ

m;

and for any integer 0 ≤ m ≤M − 1,

δτφ
m+ 1

2 :=
φm+1 − φm

τ
, σ

m+ 1
2

1 := δτRhφ
m+ 1

2 − δτφm+ 1
2 ,

σ
m+ 1

2
2 := δτφ

m+ 1
2 − ∂tφm+ 1

2 , σ
m+ 1

2
3 :=

1

2
φm+1 +

1

2
φm − φm+ 1

2

σ
m+ 1

2
4 := χ

(
φm+1, φm

)
−
(
φm+ 1

2

)3

.
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Then the PDE solution, evaluated at the half-integer time steps tm+ 1
2
, satisfies

(
δτRhφ

m+ 1
2 , ν
)

+ ε a
(
Rhµ

m+ 1
2 , ν
)

=
(
σ
m+ 1

2
1 + σ

m+ 1
2

2 , ν
)
, (4.55a)

ε a

(
1

2
Rhφ

m+1 +
1

2
Rhφ

m, ψ

)
−
(
Rhµ

m+ 1
2 , ψ
)

=
(
Eµ,m+ 1

2
a , ψ

)
− 1

ε

(
χ
(
φm+1, φm

)
, ψ
)

+
1

ε

(
φm+ 1

2 , ψ
)

+ ε a
(
σ
m+ 1

2
3 , ψ

)
+

1

ε

(
σ
m+ 1

2
4 , ψ

)
(4.55b)

for all ν, ψ ∈ Sh. Restating the fully discrete splitting scheme, Eqs. (4.7a) – (4.7b)

and (4.10a) – (4.10b), we have, for all ν, ψ ∈ Sh,

(
δτφ

1
2
h , ν
)

+ ε a
(
µ

1
2
h , ν
)

= 0, (4.56a)

ε a
(
φ

1
2
h , ψ

)
−
(
µ

1
2
h , ψ

)
= −1

ε

(
χ
(
φ1
h, φ

0
h

)
, ψ
)

+
1

ε

(
φ0
h +

τ

2
∂tφ

0, ψ
)

; (4.56b)

and, for 1 ≤ m ≤M − 1, and all ν, ψ ∈ Sh,

(
δτφ

m+ 1
2

h , ν
)

+ ε a
(
µ
m+ 1

2
h , ν

)
= 0, (4.57a)

ε a
(
φ
m+ 1

2
h , ψ

)
+
ε

4
a
(
φm+1
h − 2φmh + φm−1

h , ψ
)
−
(
µ
m+ 1

2
h , ψ

)
=− 1

ε

(
χ
(
φm+1
h , φmh

)
, ψ
)

+
1

ε

(
φ̃h

m+ 1
2 , ψ

)
.

(4.57b)

Now let us define the following additional error terms: for any integers 0 ≤ m ≤M ,

Eφ,mh := Rhφ
m − φmh , Eφ,m := φm − φmh , (4.58)

and, for any integers 0 ≤ m ≤M − 1

Eµ,m+ 1
2

h := Rhµ
m+ 1

2 − µm+ 1
2

h , Eµ,m+ 1
2 := µm+ 1

2 − µm+ 1
2

h . (4.59)
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Setting m = 0 in (4.55a) – (4.55b) and subtracting (4.56a) – (4.56b), we have

(
δτE

φ, 1
2

h , ν
)

+ ε a
(
Eµ,

1
2

h , ν
)

=
(
σ

1
2
1 + σ

1
2
2 , ν
)
, (4.60a)

ε

2
a
(
Eφ,1h + Eφ,0h , ψ

)
−
(
Eµ,

1
2

h , ψ
)

=
(
Eµ,

1
2

a , ψ
)
− 1

ε

(
χ
(
φ1, φ0

)
− χ

(
φ1
h, φ

0
h

)
, ψ
)

+
1

ε

(
φ

1
2 − φ0

h −
τ

2
∂tφ

0, ψ
)

+ ε a
(
σ

1
2
3 , ψ

)
+

1

ε

(
σ

1
2
4 , ψ

)
. (4.60b)

Similarly, subtracting (4.57a) – (4.57b) from (4.55a) – (4.55b), yields, for 1 ≤ m ≤

M − 1,

(
δτE

φ,m+ 1
2

h , ν
)

+ ε a
(
Eµ,m+ 1

2
h , ν

)
=
(
σ
m+ 1

2
1 + σ

m+ 1
2

2 , ν
)
, (4.61a)

ε

2
a
(
Eφ,m+1
h + Eφ,mh , ψ

)
+
ετ 2

4
a
(
δ2
τE

φ,m
h , ψ

)
−
(
Eµ,m+ 1

2
h , ψ

)
=
(
Eµ,m+ 1

2
a , ψ

)
− 1

ε

(
χ
(
φm+1, φm

)
− χ

(
φm+1
h , φmh

)
, ψ
)

+
1

ε

(
φm+ 1

2 − φ̃h
m+ 1

2 , ψ

)
+ ε a

(
σ
m+ 1

2
3 , ψ

)
+

1

ε

(
σ
m+ 1

2
4 , ψ

)
+
ετ 2

4
a
(
δ2
τφ

m, ψ
)
, (4.61b)

where τ 2δ2
τψ

m := ψm+1 − 2ψm + ψm−1.

Now, define the additional error terms

σ
m+ 1

2
5 := χ

(
φm+1
h , φmh

)
− χ

(
φm+1, φm

)
, (4.62)

σ
m+ 1

2
6 := φm+ 1

2 −

 φ0
h + τ

2
∂tφ

0, for m = 0

φ̃h
m+ 1

2 , for 1 ≤ m ≤M − 1
. (4.63)
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Then, setting ν = Eµ,
1
2

h in (4.60a) and ψ = δτE
φ, 1

2
h in (4.60b), setting ν = Eµ,m+ 1

2
h in

(4.61a) and ψ = δτE
φ,m+ 1

2
h in (4.61b), and adding the resulting equations, we have

ε

2
a
(
Eφ,m+1
h + Eφ,mh , δτE

φ,m+ 1
2

h

)
+
γmετ

2

4
a
(
δ2
τE

φ,m
h , δτE

φ,m+ 1
2

h

)
+ ε

∥∥∥∇Eµ,m+ 1
2

h

∥∥∥2

L2

=
(
σ
m+ 1

2
1 + σ

m+ 1
2

2 , Eµ,m+ 1
2

h

)
+
(
Eµ,m+ 1

2
a , δτE

φ,m+ 1
2

h

)
+ ε a

(
σ
m+ 1

2
3 , δτE

φ,m+ 1
2

h

)
+

1

ε

(
σ
m+ 1

2
4 + σ

m+ 1
2

5 + σ
m+ 1

2
6 , δτE

φ,m+ 1
2

h

)
+
γmετ

2

4
a
(
δ2
τφ

m, δτE
φ,m+ 1

2
h

)
, (4.64)

for all 0 ≤ m ≤M − 1, where γm := 1− δ0,m and δk,` is the Kronecker delta function.

The terms involving γm are “turned on” only when m ≥ 1. Expression (4.64) is the

key error equation from which we will define our error estimates.

Lemma 4.4.1. Suppose that (φ, µ) is a weak solution to (4.55a) – (4.55b), with

the additional regularities (4.53). Then for all tm ∈ [0, T ] and for any h, τ > 0,

there exists a constant C > 0, independent of h and τ and T , such that for all

0 ≤ m ≤M − 1,

∥∥∥σm+ 1
2

1

∥∥∥2

L2
≤ C

h2q+2

τ

∫ tm+1

tm

‖∂sφ(s)‖2
Hq+1 ds, (4.65)∥∥∥σm+ 1

2
2

∥∥∥2

L2
≤ τ 3

640

∫ tm+1

tm

‖∂sssφ(s)‖2
L2 ds, (4.66)∥∥∥∇∆σ

m+ 1
2

3

∥∥∥2

L2
≤ τ 3

96

∫ tm+1

tm

‖∇∆∂ssφ(s)‖2
L2 ds, (4.67)∥∥∥∇σm+ 1

2
3

∥∥∥2

L2
≤ τ 3

96

∫ tm+1

tm

‖∇∂ssφ(s)‖2
L2 ds, (4.68)∥∥∥∥1

2

(
φm+1

)2
+

1

2
(φm)2 −

(
φm+ 1

2

)2
∥∥∥∥2

H1

≤ τ 3

96

∫ tm+1

tm

∥∥∂ssφ2(s)
∥∥2

H1 ds, (4.69)
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and for all 1 ≤ m ≤M − 1,∥∥τ 2∇∆δ2
τφ

m
∥∥2

L2 ≤
τ 3

3

∫ tm+1

tm−1

‖∇∆∂ssφ(s)‖2
L2 ds, (4.70)

∥∥τ 2∇δ2
τφ

m
∥∥2

L2 ≤
τ 3

3

∫ tm+1

tm−1

‖∇∂ssφ(s)‖2
L2 ds, (4.71)∥∥∥∥∇(φm+ 1

2 − 3

2
φm +

1

2
φm−1

)∥∥∥∥2

L2

≤ τ 3

12

∫ tm+1

tm−1

‖∇∂ssφ(s)‖2
L2 ds, (4.72)

and finally,∥∥∥∇(φ 1
2 − φ0 − τ

2
∂tφ

0
)∥∥∥

L2
≤ τ 3

24

∫ t 1
2

t0

‖∇∂ssφ(s)‖2
L2 ds. (4.73)

Proof. The proof of each of the inequalities above is a direct application of Taylor’s

Theorem with integral remainder 2.2.27 and Hölder’s Inequality (2.12). Inequality

(4.65) also uses the finite element approximation property for the Ritz projection,

∥∥∥σm+ 1
2

1

∥∥∥2

L2
=
∥∥∥δτRhφ

m+ 1
2 − δτφm+ 1

2

∥∥∥2

L2

=

∥∥∥∥Rhφ
m+1 − φm+1

τ
− Rhφ

m − φm

τ

∥∥∥∥2

L2

=
1

τ 2

∥∥Rh

(
φm+1 − φm

)
−
(
φm+1 − φm

)∥∥2

L2

=
1

τ 2

∥∥∥∥∫ tm+1

tm

Rh∂sφ(s)− ∂sφ(s) ds

∥∥∥∥2

L2

≤ 1

τ 2

∥∥∥∥∥
(∫ tm+1

tm

1ds

) 1
2
(∫ tm+1

tm

(Rh∂sφ(s)− ∂sφ(s))2 ds

) 1
2

∥∥∥∥∥
2

L2

=
1

τ

∫
Ω

∫ tm+1

tm

(Rh∂sφ(s)− ∂sφ(s))2 ds dx

=
1

τ

∫
Ω

‖Rh∂sφ(s)− ∂sφ(s)‖2
L2 ds

≤ 1

τ

∫
Ω

(
Chq+1 ‖∂sφ(s)‖Hq+1

)2
ds

=C
h2q+2

τ

∫ tm+1

tm

‖∂sφ(s)‖2
Hq+1 ds.
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Inequality (4.66) proceeds as follows,

∥∥∥σm+ 1
2

2

∥∥∥2

L2
=
∥∥∥δτφm+ 1

2 − ∂tφm+ 1
2

∥∥∥2

L2

=

∣∣∣∣∣
∣∣∣∣∣1τ
(
φm+1 − φm+ 1

2 − τ

2
∂tφ

m+ 1
2 − 1

2

(τ
2

)2

∂ttφ
m+ 1

2

)

− 1

τ

(
φm − φm+ 1

2 −
(
−τ

2

)
∂tφ

m+ 1
2 − 1

2

(
−τ

2

)2

∂ttφ
m+ 1

2

) ∣∣∣∣∣
∣∣∣∣∣
2

L2

=
1

τ 2

∥∥∥∥∥∥1

2

∫ tm+1

t
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L2 ds.
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Inequalities (4.67) and (4.68) are similar. The proof for (4.67) now follows,
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1
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)∥∥∥∥2

L2

=
1

4

∣∣∣∣∣∣∇∆φm+1 −∇∆φm+ 1
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∣∣∣∣∣
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4

∫
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t
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2

(tm+1 − s)2 ds

∫ tm+1

t
m+1

2

(∇∆∂ssφ(s))2 dsdx

+
1

4

∫
Ω

∫ tm+1
2

tm
(tm − s)2 ds
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2

tm
(∇∆∂ssφ(s))2 dsdx

=
1

4
· τ

3

24

∫
Ω

∫ tm+1

t
m+1

2

(∇∆∂ssφ(s))2 ds+

∫ tm+1
2
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(∇∆∂ssφ(s))2 dsdx


=
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∫ tm+1

tm

‖∇∆∂ssφ(s)‖2
L2 ds.

Additionally, the proof for inequality (4.69) follows in the same manner as that for

inequality (4.67) above. The details for inequality (4.70) immediately follow,

∥∥τ 2∇∆δ2
τφ

m
∥∥2

L2 =
∥∥∇φm+1 − 2∇φm +∇φm−1

∥∥2

L2

=
∥∥∇φm+1 −∇φm − τ∂t∇φm +∇φm−1 −∇φm − (−τ)∂t∇φm

∥∥2

L2

=
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tm
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∥∥∥∥2
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≤
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Ω
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+

∫
Ω
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(tm−1 − s)2 ds

∫ tm

tm−1

(∇∂ssφ(s))2 dsdx

=
τ 3

3

∫ tm+1

tm−1

‖∇∆∂ssφ(s)‖2
L2 ds.
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Inequality (4.71) follows similarly. The final two inequalities uses similar tricks as

above. The details are as follows,∥∥∥∥∇(φm+ 1
2 − 3

2
φm +

1

2
φm−1

)∥∥∥∥2

L2

=
∣∣∣∣∣∣1

2
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)
+∇φm+ 1
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2

)
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∣∣∣∣∣∣2
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=

∣∣∣∣∣
∣∣∣∣∣12
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(tm−1 − s)∇∂ssφ(s) ds

+
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2
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(tm+ 1
2
− s)∇∂ssφ(s) ds
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∣∣∣∣∣
2
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≤ 1

4

∫
Ω

∫ tm
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∫ tm
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(∇∂ssφ(s))2 dsdx

+

∫
Ω

∫ tm+1
2

tm

(tm+ 1
2
− s)2 ds

∫ tm+1
2

tm

(∇∂ssφ(s))2 dsdx

=
1

4

τ 3

3

∫
Ω

∫ tm

tm−1

(∇∂ssφ(s))2 dsdx

+
τ 3

23 · 3

∫
Ω

∫ tm+1
2

tm

(∇∂ssφ(s))2 dsdx

=
τ 3

12

∫ tm+1
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‖∇∂ssφ(s)‖2
L2 ds.

And finally,

∥∥∥∇(φ 1
2 − φ0 − τ

2
∂tφ

0
)∥∥∥

L2
=

∥∥∥∥∫ t 1
2

t0

(t 1
2
− s)∇∂ssφ(s) ds

∥∥∥∥2

L2

≤
∫

Ω

∫ t 1
2

t0

(t 1
2
− s)2 ds

∫ t 1
2

t0

(∇∂ssφ(s))2 dsdx

=
τ 3

23 · 3

∫ t 1
2
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‖∇∂ssφ(s)‖2
L2 ds

=
τ 3
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∫ t 1
2
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‖∇∂ssφ(s)‖2
L2 ds.

96



Lemma 4.4.2. Suppose that (φ, µ) is a weak solution to (4.55a) – (4.55b), with the

additional regularities (4.53). Then, there exists a constant C > 0 independent of h

and τ – but possibly dependent upon T through the regularity estimates – such that,

for any h, τ > 0,

∥∥∥∇σm+ 1
2

4

∥∥∥2

L2
≤Cτ 3

∫ tm+1

tm

‖∇∂ssφ(s)‖2
L2 ds+ Cτ 3

∫ tm+1

tm

∥∥∂ssφ2(s)
∥∥2

H1 ds. (4.74)

Proof. We begin with the expansion

∇σm+ 1
2

4 =

(
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2
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1

2
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∇
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(
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2
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)
∇
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1

2
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1
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2 ∇
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1

2

(
φm+1

)2
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1

2
(φm)2 −

(
φm+ 1

2

)2
)
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(
1

2

(
φm+1

)2
+

1

2
(φm)2 −

(
φm+ 1

2

)2
)
∇φm+ 1

2 . (4.75)
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By the triangle inequality, Young’s inequality, and the embedding H1(Ω) ↪→ L6(Ω),

we have

∥∥∥∇σm+ 1
2

4

∥∥∥
L2
≤
∥∥∥∥1

2
φm+1 +

1

2
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∥∥∥∥
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2
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1

2
(φm)2

)∥∥∥∥
L3
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∥∥∥∥1
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1

2
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1

2
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∥∥∥∥1
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2
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∥∥∥∥
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×
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2
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2
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2

)∥∥∥∥
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{∥∥∥φm+ 1

2
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+
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2

∥∥∥
L3

}
×
∥∥∥∥1

2

(
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+

1

2
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(
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2
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∥∥∥∥
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(4.76)

Using the assumed regularities (4.53) of the PDE solution, and appealing to the

truncation error estimates (4.68) and (4.69), the result follows.

Lemma 4.4.3. Suppose that (φ, µ) is a weak solution to (4.55a) – (4.55b), with the

additional regularities (4.53). Then, there exists a constant C > 0 independent of h

and τ , but possibly dependent upon T , such that, for any h, τ > 0,

∥∥∥∇σm+ 1
2

5

∥∥∥2

L2
≤C

∥∥∇Eφ,m+1
∥∥2

L2 + C
∥∥∇Eφ,m∥∥2

L2 , (4.77)

where Eφ,m := φm − φmh .
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Proof. We begin with the detailed expansion
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∇
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∇
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∇
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∇
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ω
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)
· (φmh − φm)
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h
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+ (φmh )2 + 2φm+1

h

(
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h + φmh
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∇
(
φm+1
h − φm+1

)
+
{(
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h

)2
+ (φmh )2 + 2φmh

(
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+
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∇
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)
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(
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)
+

{
∇
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(
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}
(φmh − φm) . (4.78)

Then, using the unconditional a priori estimates in Lemmas 4.3.8 and 4.3.12, the

assumption that φ ∈ L∞ (0, T ;W 1,6(Ω)), and the embedding H1(Ω) ↪→ L6(Ω) we
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have, for any 0 ≤ m ≤M − 1,

∥∥∥∇σm+ 1
2

5

∥∥∥
L2
≤C

(∥∥∇Eφ,m+1
∥∥
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(∥∥Eφ,m+1
∥∥
L6 +

∥∥Eφ,m∥∥
L6

)
×
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∥∥∇Eφ,m+1
∥∥
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∥∥∇Eφ,m∥∥
L2 . (4.79)

Lemma 4.4.4. Suppose that (φ, µ) is a weak solution to (4.55a) – (4.55b), with the

additional regularities (4.53). Then, there exists a constant C > 0 independent of h

and τ such that, for any h, τ > 0,

∥∥∥∇σm+ 1
2

6

∥∥∥2

L2
≤ γmCτ 3

∫ tm

tm−1

‖∇∂ssφ(s)‖2
L2 ds+ Cτ 3

∫ tm+1

tm

‖∇∂ssφ(s)‖2
L2 ds

+ C
∥∥∇Eφ,m∥∥2

L2 + γmC
∥∥∇Eφ,m−1

∥∥2

L2 + δ0,mCh
2q |φ0|2Hq+1 , (4.80)

where Eφ,m := φm − φmh and δk,` is the Kronecker delta.

Proof. For m = 0, using the truncation error estimate (4.73) and a standard finite

element estimate for the Ritz projection, we have

∥∥∥∇σ 1
2
6

∥∥∥2

L2
≤ 2
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24

∫ t 1
2
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L2 ds+ Ch2q |φ0|2Hq+1 , (4.81)

with the observation that φ0
h := Rhφ0. For 1 ≤ m ≤ M − 1, using the truncation

error estimate (4.72), we obtain
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4
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∥∥2

L2 .

(4.82)
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We now proceed to estimate the terms on the right-hand-side of (4.64).

Lemma 4.4.5. Suppose that (φ, µ) is a weak solution to (4.55a) – (4.55b), with the

additional regularities (4.53). Then, for any h, τ > 0 and any α > 0 there exists a

constant C = C(α, T ) > 0, independent of h and τ , such that, for 0 ≤ m ≤M − 1,
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where
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L2 ds. (4.84)

Proof. Define, for 0 ≤ m ≤M − 1, time-dependent spatial mass average

Eµ,m+ 1
2

h := |Ω|−1
(
Eµ,m+ 1

2
h , 1

)
. (4.85)

Using the Cauchy-Schwarz inequality, the Poincaré inequality, with the fact that

(
σ
m+ 1

2
1 + σ

m+ 1
2

2 , 1
)

= 0,
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and the local truncation error estimates (4.65) and (4.66), we get the following

estimate:
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(4.86)

Standard finite element approximation theory shows that
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Applying Lemma 2.2.22 and the last estimate, we have
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Using Lemma 2.2.22 and estimate (4.67), we find
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(4.88)

Now, using Lemmas 4.4.2 and 2.2.22, we obtain
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(4.89)

Similarly, using Lemmas 4.4.3 and 2.2.21, the relation Eφ,m+1 = Eφ,m+1
a +Eφ,m+1

h , and

a standard finite element error estimate, we arrive at
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Applying Lemmas 4.4.4 and 2.2.22, the relation Eφ,m+1 = Eφ,m+1
a + Eφ,m+1

h , and a

standard finite element error estimate,
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To finish up, using (4.69),

γmετ
2

4
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(4.92)

Combining the estimates (4.86) – (4.92) with the error equation (4.64), the result

follows.

Lemma 4.4.6. Suppose that (φ, µ) is a weak solution to (4.55a) – (4.55b), with the

additional regularities (4.53). Then, for any h, τ > 0, there exists a constant C > 0,

independent of h and τ , such that

∥∥∥δτEφ,m+ 1
2

h

∥∥∥2

−1,h
≤ 2 ε2
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L2
+ CRm+ 1

2 , (4.93)

where Rm+ 1
2 is the consistency term given in (4.84).
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Proof. Setting ν = Th
(
δτE
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in (4.60a) and ν = Th
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for 0 ≤ m ≤M−1 and where we have used Lemma 4.4.1. The result now follows.

Lemma 4.4.7. Suppose that (φ, µ) is a weak solution to (4.55a) – (4.55b), with the

additional regularities (4.53). Then, for any h, τ > 0, there exists a constant C > 0,

independent of h and τ , but possibly dependent upon T , such that

ε

2
a
(
Eφ,m+1
h + Eφ,mh , δτE
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Proof. This follows upon combining the last two lemmas and choosing α in (4.83)

appropriately.

Using the last lemma, we are ready to show the main convergence result for our

second-order splitting scheme.
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Theorem 4.4.8. Suppose (φ, µ) is a weak solution to (4.55a) – (4.55b), with the

additional regularities (4.53). Then, provided 0 < τ < τ0, for some τ0 sufficiently

small,

max
0≤m≤M−1
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L2
+ τ

M−1∑
m=0

∥∥∥∇Eµ,m+ 1
2

h

∥∥∥2

L2
≤ C(T )(τ 4 + h2q) (4.96)

for some C(T ) > 0 that is independent of τ and h.

Proof. Using Lemma 4.4.7, we have
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Letting m = 0 in the previous equation and noting that Eφ,0h ≡ 0 and γ0 = 0, then

1
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4
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If 0 < τ ≤ τ0 := 1
2C1

< 1
C1

, it follows from the last estimate that
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≤ τ CR
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where we have used the regularity assumptions to conclude τ CR 1
2 ≤ C(τ 4 + h2q).

Now, applying τ
∑`

m=0 to (4.97),
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If 0 < τ ≤ τ0 := 1
2C2

< 1
C2

, it follows from the last estimate that
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where we have used (4.99) and the regularity assumptions to conclude τ
∑M−1

m=0 Rm+ 1
2 ≤

C(τ 4 + h2q). Appealing to the discrete Gronwall inequality 2.2.26, it follows that, for

any 0 < ` ≤M − 1, ∥∥∥∇Eφ,`+1
h

∥∥∥2

L2
≤ C(T )(τ 4 + h2q). (4.102)

Considering estimates (4.99), (4.100), and (4.102) we get the desired result.

Remark 4.4.9. From here it is straightforward to establish an optimal error estimate

of the form

max
0≤m≤M−1

∥∥∇Eφ,`+1
∥∥2

L2 + τ
M−1∑
m=0

∥∥∥∇Eµ,m+ 1
2

∥∥∥2

L2
≤ C(T )(τ 4 + h2q) (4.103)

using Eφ = Eφa + Eφh , et cetera, the triangle inequality, and the standard spatial

approximations. We omit the details for the sake of brevity.

4.5 Numerical Experiments

In this section, we provide some numerical experiments to gauge the accuracy and

reliability of the fully discrete finite element method developed in the previous

sections. We use a square domain Ω = (0, 1)2 ⊂ R2 and take Th to be a regular

triangulation of Ω consisting of right isosceles triangles. To refine the mesh, we

assume that T`, ` = 0, 1, ..., L, is an hierarchy of nested triangulations of Ω where

T`, is obtained by subdividing the triangles of T`−1 into four congruent sub-triangles.

Note that h`−1 = 2h`, ` = 1, ..., L and that {T`} is a quasi-uniform family. (We use
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a family of meshes Th such that no triangle in the mesh has more than one edge on

the boundary.) We use the P2 finite element space for the phase field and chemical

potential. In short, we take q = 2.

We solve the scheme (4.7a) – (4.10b) with ε = 6.25 × 10−2. The initial data for

the phase field is taken to be

φ0
h = Ih

{
1

2

(
1.0− cos(4.0πx)

)
·
(

1.0− cos(2.0πy)
)
− 1.0

}
, (4.104)

where Ih : H2 (Ω) → Sh is the standard nodal interpolation operator. Recall that

our analysis does not specifically cover the use of the operator Ih in the initialization

step. But, since the error introduced by its use is optimal, a slight modification of

the analysis shows that this will lead to optimal rates of convergence overall. (See

Remark 4.3.4.) To solve the system of equations above numerically, we are using the

finite element libraries from the FEniCS Project [47].

Note that source terms are not naturally present in the system of equations (1.2a)

– (1.2c). Therefore, it is somewhat artificial to add them to the equations in attempt

to manufacture exact solutions. To get around the fact that we do not have possession

of exact solutions, we measure error by a different means. Specifically, we compute

the rate at which the Cauchy difference, δζ := ζ
Mf

hf
− ζMc

hc
, converges to zero, where

hf = 2hc, τf = 2τc, and τfMf = τcMc = T . Then, using a linear refinement path,

i.e., τ = Ch, and assuming q = 2, we have

‖δζ‖H1 =
∥∥∥ζMf

hf
− ζMc

hc

∥∥∥
H1
≤
∥∥∥ζMf

hf
− ζ(T )

∥∥∥
H1

+
∥∥ζMc

hc
− ζ(T )

∥∥
H1 = O(hqf+τ

2
f ) = O(h2

f ).

(4.105)

The results of the H1 Cauchy error analysis are found in Table 4.1 and confirm second-

order convergence in this case. Additionally, we have proved that (at the theoretical

level) the modified energy is non-increasing at each time step. This is observed in our

computations and shown below in Figures 4.1 and 4.2.
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Table 4.1: H1 Cauchy convergence test. The final time is T = 4.0 × 10−1, and the refinement
path is taken to be τ = .001

√
2h with ε = 6.25 × 10−2. The Cauchy difference is defined via

δφ := φhf
− φhc

, where the approximations are evaluated at time t = T , and analogously for δµ.
Since q = 2, i.e., we use P2 elements for these variables, the norm of the Cauchy difference at T is

expected to be O(τ2f ) +O
(
h2f

)
= O

(
h2f

)
.

hc hf ‖δφ‖H1 rate ‖δµ‖H1 rate
√

2/16
√

2/32 1.148× 10−1 – 1.307× 10−1 –√
2/32

√
2/64 2.939× 10−2 1.95 3.299× 10−2 1.98√

2/64
√

2/128 7.468× 10−3 1.97 8.295× 10−3 1.99√
2/128

√
2/256 1.913× 10−3 1.95 2.087× 10−3 1.99

Figure 4.1: Energy dissipation for the second order numerical scheme for the Cahn-Hilliard

problem. All parameters are as listed in Table 4.1 and we have taken h =
√
2

32 .

Figure 4.2: Energy dissipation for the second order numerical scheme for the Cahn-Hilliard
problem. If we zoom in on the first four time steps, we are able to see the difference between
the modified energy F (φ) and the Cahn-Hilliard energy E(φ). All parameters are as listed in Table

4.1 and we have taken h =
√
2

32 .
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Chapter 5

Future Directions

Chapter 5 is devoted to outlining a few possible avenues for the continuation of

research presented in this dissertation.

5.1 Global-in-Time Estimates

Note that while all the stability and error estimates presented throughout this

dissertation are unconditional with respect to the time and space step sizes, τ and h,

they are not global-in-time, since the bounds depend on the final time T . Recently,

Guo et al. [32] have developed analysis tools to show that solutions to their finite

difference version of the scheme (4.7b)–(4.7b) are bounded globally-in-time for the

phase field variable in the L∞(0, T ;L∞(Ω)) norm, but at the price of a mild time

step restriction. With their success in mind, we would like to revisit the analysis

of the finite element version of the second-order convex splitting scheme for the

Cahn-Hilliard problem (1.2a)–(1.2c) with the goal of obtaining global-in-time stability

results. Furthermore, we would like to develop and analyze a second order convex-

splitting scheme for a CHS system of equations, similar to (3.7a)–(3.7e) described

in Chapter 3. In particular, investigation of whether it is possible to prove stability

estimates that are unconditional with respect to the time and space step sizes and
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global-in-time should be completed. A rigorous proof of optimal-order error estimates

for the second-order convex splitting schemes could then be examined.

5.2 The Cahn-Hilliard-Navier-Stokes Equations

Chapter 3 of this dissertation presented a numerical scheme for a mathematical model

which could be used to describe the flow of a very viscous block copolymer fluid. The

model paired the Darcy-Stokes equations (used to describe the fluid motion) with

the Cahn-Hilliard equations creating a diffuse interface setting. However, the Darcy-

Stokes equations can be somewhat limiting in describing the behavior of fluids. To

capture more complicated dynamics of two-phase fluid flows, one should consider

the Navier-Stokes equations. These equations have become the leading equations

in modeling incompressible, viscous Newtonian fluids and, due to the wide range of

applications, continue to be of tremendous mathematical interest. In particular, much

research has been done on the so called Model H [36] which pairs the Navier-Stokes

equations with the Cahn-Hilliard equations and which has become the accepted model

for flows involving incompressible components with matched densities [21, 22, 24, 38,

40, 29, 57, 56] and references therein. Most recently, Jie Shen and Xiaofeng Yang [58]

proposed two new numerical schemes for the Cahn-Hilliard-Navier-Stokes equation,

one based on stabilization and the other based on convex splitting. Their new schemes

have the advantage of being totally decoupled, linear, and unconditionally energy

stable. However, no formal error analysis has been performed. Using the theory set

forth in this dissertation, we would like to complete the formal error analysis for the

convex splitting scheme presented in [58] if possible.

Additionally, there still remains a question of how to treat the case where the fluid

densities do not match. Jie Shen and Xiaofeng Yang [56] likewise address this issue

in [58]. The CHNS model they present is thermodynamically consistent and satisfies

an energy dissipation law. They go on to introduce two numerical methods similar

to those presented for the matched density case above. Abels et. al. [1] introduce
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a thermodynamically consistent generalization to the Cahn-Hilliard-Navier-Stokes

model for the case of non-matched densities based on a solenoidal velocity field. The

authors demonstrate that their model satisfies a free energy inequality and conserves

mass. As a follow-up, Garcke et. al. [27] present a new time discretization scheme

for the numerical simulation for this model. They show that their scheme satisfies a

discrete in time energy law and go on to develop a fully discrete model which preserves

that energy law. They are furthermore able to show existence of solutions to both

the time discrete and fully discrete schemes. Again, however, no formal error analysis

is constructed for either of these schemes.

A third model/scheme for consideration for the Cahn-Hilliard-Navier-Stokes

equations is presented in [33] by Daozhi Han and Xiaoming Wang. The scheme

is presented as a second order in time, uniquely solvable, unconditionally stable

numerical scheme for the CHNS equations with match density. The scheme is

based on second order convex splitting for the Cahn-Hilliard equation and pressure-

projection for the Navier-Stokes equation. The authors show that the scheme satisfies

a modified energy law which mimics the continuous version of the energy law and

prove unique solvability. However, no formal error analysis is presented and stability

estimates are restricted to those gleaned from the energy law. No advanced stability

estimates are obtained. The overall scheme is based on the Crank Nicholson time

discretization and a second order Adams Bashforth extrapolation. Recall that the

second order scheme we present in this dissertation for the Cahn-Hilliard equations is

also based on the Crank Nicholson time discretization and a second order Adams

Bashforth extrapolation but includes an additional second order advection term.

In order to achieve advanced stability estimates and provide a formal convergence

analysis, we suggest adding this additional term into the authors’ proposed scheme.

As a preliminary step to the course of action described below, we will make the

necessary alteration to the scheme presented in [33] and complete the stability and

convergence analyses following the work presented in this dissertation.
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We now describe a course of action for pursuing numerical analyses for CHNS

models with density and viscosity disparity. As a first step, we would like to build

on the models described in the papers above and develop and analyze both first and

second-order convex splitting schemes for the density-matched CHNS system with

the goal of achieving unconditional stability and optimal order error estimates in line

with the analyses presented in this dissertation. Again, it may be possible to obtain

some or all of the anterior stability estimates unconditionally with respect to τ and

h, and investigation of whether it is possible to obtain some of the stability bounds

globally-in-time would follow. If the stability φh ∈ L∞(0, T ;L∞(Ω)) is available,

as preliminary evidence suggests, then it should be possible to derive optimal-order

error estimates. The completion of the analyses in the first two steps would then open

the door for investigation of first and second-order convex splitting schemes for the

general CHNS system for density and viscosity mismatch. Because the structure of

the diffusion equation is unchanged in all of the model variations, there is significant

reason to be optimistic that some or all of the stabilities described herein will be

achievable and will lead to optimally convergent and efficient numerical schemes for

the CHNS systems.

5.3 Variable Parameters and Mobilities

From Chapter 3, we note that we have only considered parameters and mobilities

of constant values. However, this simplifying assumption may prove to be physically

unrealistic. Therefore, as a future direction, it would be natural to consider mobilities

and parameters which take on physical meaning such as viscosity, permeability,

density etc. as variable rather than static in line with their physical meanings.
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5.4 Fast Solvers

The numerical schemes (3.7a) - (3.7e) and (4.7a) - (4.10b) require solving very large

non-linear systems. Therefore, taking fine discretizations in practice require long

computational run times. However, there are a few options to improving the amount

of required computational work and, thus, reducing run times. One promising option

is the finite element multigrid method. In their book, Brenner and Scott [5] describe

a multigrid method which provides an optimal order algorithm for solving a two

dimensional piecewise linear elliptic boundary value problem. The two main features

of the multigrid method are smoothing on the current grid and error correction on a

coarser grid. The advantage is that the amount of computational work is then only

proportional to the number of unknowns in the discretized equations. We believe a

multigrid method for the schemes presented in Chapters 3 and 4 are possible and well

worth exploring.
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