858 research outputs found

    2010 Status Quo for Life Cycle Inventory and Environmental Impact Assessment of Wood-Based Panel Products in Germany

    Get PDF
    Considering the importance of the German wood-based panel industry, the current status of available life-cycle inventory (LCI) data for these products is quite unsatisfying. In this study, detailed disaggregated LCI and environmental life-cycle assessment (LCA) data and variation in data on production of the core products of the German wood-based panel sector are given. The data suit a wide range of applications and are transparently documented, allowing consistent combination with other raw data sets. The data are analyzed in terms of sensitivity of environmental impacts to the variations in LCI. Also, specific advice is given to LCA practitioners on how to narrow the presented variations with respect to the environmental impact category they are interested in. Results are presented for the typical midpoint environmental impact categories excluding toxicity indicators. For the latter, the relevant data gaps are discussed

    Discrimination of Dynamical System Models for Biological and Chemical Processes

    Get PDF
    In technical chemistry, systems biology and biotechnology, the construction of predictive models has become an essential step in process design and product optimization. Accurate modelling of the reactions requires detailed knowledge about the processes involved. However, when concerned with the development of new products and production techniques for example, this knowledge often is not available due to the lack of experimental data. Thus, when one has to work with a selection of proposed models, the main tasks of early development is to discriminate these models. In this article, a new statistical approach to model discrimination is described that ranks models wrt. the probability with which they reproduce the given data. The article introduces the new approach, discusses its statistical background, presents numerical techniques for its implementation and illustrates the application to examples from biokinetics

    Self-stabilizing positron acceleration in a plasma column

    Full text link
    Plasma accelerators sustain extreme field gradients, and potentially enable future compact linear colliders. Although tremendous progress has been achieved in accelerating electron beams in a plasma accelerator, positron acceleration with collider-relevant parameters is challenging. A recently proposed positron acceleration scheme relying on the wake generated by an electron drive beam in a plasma column has been shown to be able to accelerate positron witness beams with low emittance and low energy spread. However, since this scheme relies on cylindrical symmetry, it is possibly prone to transverse instabilities that could lead, ultimately, to beam break-up. In this article, we show that the witness beam itself is subject to various damping mechanisms and, therefore, this positron acceleration scheme is inherently stable towards misalignment of the drive and witness beams. This enables stable, high-quality plasma-based positron acceleration

    Principles of Small-Molecule Transport through Synthetic Nanopores

    Get PDF
    Synthetic nanopores made from DNA replicate the key biological processes of transporting molecular cargo across lipid bilayers. Understanding transport across the confined lumen of the nanopores is of fundamental interest and of relevance to their rational design for biotechnological applications. Here we reveal the transport principles of organic molecules through DNA nanopores by synergistically combining experiments and computer simulations. Using a highly parallel nanostructured platform, we synchronously measure the kinetic flux across hundreds of individual pores to obtain rate constants. The single-channel transport kinetics are close to the theoretical maximum, while selectivity is determined by the interplay of cargo charge and size, the pores' sterics and electrostatics, and the composition of the surrounding lipid bilayer. The narrow distribution of transport rates implies a high structural homogeneity of DNA nanopores. The molecular passageway through the nanopore is elucidated via coarse-grained constant-velocity steered molecular dynamics simulations. The ensemble simulations pinpoint with high resolution and statistical validity the selectivity filter within the channel lumen and determine the energetic factors governing transport. Our findings on these synthetic pores' structure-function relationship will serve to guide their rational engineering to tailor transport selectivity for cell biological research, sensing, and drug delivery

    Extracellular Vesicles in Musculoskeletal Pathologies and Regeneration

    Get PDF
    The incidence of musculoskeletal diseases is steadily increasing with aging of the population. In the past years, extracellular vesicles (EVs) have gained attention in musculoskeletal research. EVs have been associated with various musculoskeletal pathologies as well as suggested as treatment option. EVs play a pivotal role in communication between cells and their environment. Thereby, the EV cargo is highly dependent on their cellular origin. In this review, we summarize putative mechanisms by which EVs can contribute to musculoskeletal tissue homeostasis, regeneration and disease, in particular matrix remodeling and mineralization, pro-angiogenic effects and immunomodulatory activities. Mesenchymal stromal cells (MSCs) present the most frequently used cell source for EV generation for musculoskeletal applications, and herein we discuss how the MSC phenotype can influence the cargo and thus the regenerative potential of EVs. Induced pluripotent stem cell-derived mesenchymal progenitor cells (iMPs) may overcome current limitations of MSCs, and iMP-derived EVs are discussed as an alternative strategy. In the last part of the article, we focus on therapeutic applications of EVs and discuss both practical considerations for EV production and the current state of EV-based therapies

    Synthetic protein-conductive membrane nanopores built with DNA

    Get PDF
    Nanopores are key in portable sequencing and research given their ability to transport elongated DNA or small bioactive molecules through narrow transmembrane channels. Transport of folded proteins could lead to similar scientific and technological benefits. Yet this has not been realised due to the shortage of wide and structurally defined natural pores. Here we report that a synthetic nanopore designed via DNA nanotechnology can accommodate folded proteins. Transport of fluorescent proteins through single pores is kinetically analysed using massively parallel optical readout with transparent silicon-on-insulator cavity chips vs. electrical recordings to reveal an at least 20-fold higher speed for the electrically driven movement. Pores nevertheless allow a high diffusive flux of more than 66 molecules per second that can also be directed beyond equillibria. The pores may be exploited to sense diagnostically relevant proteins with portable analysis technology, to create molecular gates for drug delivery, or to build synthetic cells

    The IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis

    Get PDF
    Insulin-like growth factor 2 (IGF2), a developmentally regulated and maternally imprinted gene, is frequently overexpressed in pediatric cancers. Although loss of imprinting (LOI) at fetal promoters contributes to increased IGF2 in tumors, the magnitude of IGF2 expression suggests the involvement of additional regulatory mechanisms. A microRNA (miRNA) screen of primary Wilms' tumors identified specific overexpression of miR-483-5p, which is embedded within the IGF2 gene. Unexpectedly, the IGF2 mRNA itself is transcriptionally up-regulated by miR-483-5p. A nuclear pool of miR-483-5p binds directly to the 5′ untranslated region (UTR) of fetal IGF2 mRNA, enhancing the association of the RNA helicase DHX9 to the IGF2 transcript and promoting IGF2 transcription. Ectopic expression of miR-483-5p in IGF2-dependent sarcoma cells is correlated with increased tumorigenesis in vivo. Together, these observations suggest a functional positive feedback loop of an intronic miRNA on transcription of its host gene
    corecore