86 research outputs found

    A new yield simulator for transiting planets and false positives: application to the Next Generation Transit Survey

    Get PDF
    We present a yield simulator to predict the number and characteristics of planets, false positives and false alarms in transit surveys. The simulator is based on a galactic model and the planet occurrence rates measured by the Kepler mission. It takes into account the observation window function and measured noise levels of the investigated survey. Additionally, it includes vetting criteria to identify false positives. We apply this simulator to the Next Generation Transit Survey (NGTS), a wide-field survey designed to detect transiting Neptune-sized exoplanets. We find that red noise is the main limitation of NGTS up to 14 mag, and that its obtained level determines the expected yield. Assuming a red noise level of 1 mmag, the simulation predicts the following for a 4-yr survey: 4 ± 3 Super-Earths, 19 ± 5 Small Neptunes, 16 ± 4 Large Neptunes, 55 ± 8 Saturn-sized planets and 150 ± 10 Jupiter-sized planets, along with 4688 ± 45 eclipsing binaries and 843 ± 75 background eclipsing binaries. We characterize the properties of these objects to enhance the early identification of false positives and discuss follow-up strategies for transiting candidates

    Generation of a single pulmonary pressure-volume curve does not durably affect oxygenation in patients with acute respiratory distress syndrome

    Get PDF
    INTRODUCTION: It is possible that taking a static pressure-volume (PV) measurement could durably affect oxygenation and thus interfere with early evaluation of a therapeutic intervention delivered just after that measurement. The aim of the present study was to investigate the effects over time of a single static PV measurement on gas exchange and haemodynamics; the PV measurements were taken using a super syringe and by using the constant flow method in patients with acute respiratory distress syndrome. METHOD: We conducted a prospective, randomized and controlled interventional study in an intensive care unit. The study was conducted in 17 patients with early acute respiratory distress syndrome ventilated with a tidal volume of 6.9 ± 1.0 ml/kg, a plateau pressure of 27 ± 7 cmH(2)O and a positive end-expiratory pressure [PEEP] of 10 cmH(2)O. They were all evaluated for 1 hour after each of the following two measurements was taken and during a control period (in a randomized order): generation of a PV curve using a 2 l super syringe (PV(SS); insufflated volume = 1824 ± 381 ml, plateau pressure = 46 ± 9 cmH(2)O); and generation of a PV curve using the constant flow method on the ventilator (PV(CF); insufflated volume = 1120 ± 115 ml in zero end-expiratory pressure after 20 s expiratory pause, plateau pressure = 46 ± 11 cmH(2)O). The maximal airway pressure allowed during PV measurement was 60 cmH(2)O. PEEP was set to 10 cmH(2)O immediately after PV measurement. Partial arterial oxygen tension (Pao(2)), partial carbon dioxide tension (Paco(2)) and mean arterial pressure were recorded each minute. RESULTS: PV measurement did not significantly affect Pao(2), Paco(2), mean arterial pressure and lung mechanics. Two patients exhibited a sustained increase in Pao(2 )by more than 20% after PV(CF )(>60 minutes). Two patients exhibited a decrease in Pao(2 )by more than 20% after PV(SS), which was sustained in one. These latter patients had an upper inflection point identified on the PV curve. After PV(SS), Paco(2 )increased by more than 10 mmHg in two patients and returned to baseline values after 15 minutes. One patient exhibited a decrease in mean arterial pressure by more than 10 mmHg for less than 5 minutes after PV(SS )and one patient after PV(CF). CONCLUSION: Evaluation of the effects of a strategy aimed at improving oxygenation can be reliably recorded early after a single PV measurement that is not followed by a change in PEEP level. PV measurement using the constant flow method improves oxygenation in a limited number of patients

    WASP-80b has a dayside within the T-dwarf range

    Get PDF
    AHMJT is a Swiss National Science Foundation (SNSF) fellow under grant number P300P2-147773. MG and EJ are Research Associates at the F.R.S-FNRS; LD received the support the support of the F.R.I.A. fund of the FNRS. DE, KH, and SU acknowledge the financial support of the SNSF in the frame of the National Centre for Competence in Research ‘PlanetS’. EH and IR acknowledge support from the Spanish Ministry of Economy and Competitiveness (MINECO) and the ‘Fondo Europeo de Desarrollo Regional’ (FEDER) through grants AYA2012-39612-C03-01 and ESP2013-48391-C4-1-R.WASP-80b is a missing link in the study of exo-atmospheres. It falls between the warm Neptunes and the hot Jupiters and is amenable for characterisation, thanks to its host star's properties. We observed the planet through transit and during occultation with Warm Spitzer. Combining our mid-infrared transits with optical time series, we find that the planet presents a transmission spectrum indistinguishable from a horizontal line. In emission, WASP-80b is the intrinsically faintest planet whose dayside flux has been detected in both the 3.6 and 4.5 μ\mum Spitzer channels. The depths of the occultations reveal that WASP-80b is as bright and as red as a T4 dwarf, but that its temperature is cooler. If planets go through the equivalent of an L-T transition, our results would imply this happens at cooler temperatures than for brown dwarfs. Placing WASP-80b's dayside into a colour-magnitude diagram, it falls exactly at the junction between a blackbody model and the T-dwarf sequence; we cannot discern which of those two interpretations is the more likely. Flux measurements on other planets with similar equilibrium temperatures are required to establish whether irradiated gas giants, like brown dwarfs, transition between two spectral classes. An eventual detection of methane absorption in transmission would also help lift that degeneracy. We obtained a second series of high-resolution spectra during transit, using HARPS. We reanalyse the Rossiter-McLaughlin effect. The data now favour an aligned orbital solution and a stellar rotation nearly three times slower than stellar line broadening implies. A contribution to stellar line broadening, maybe macroturbulence, is likely to have been underestimated for cool stars, whose rotations have therefore been systematically overestimated. [abridged]Publisher PDFPeer reviewe

    Hubble Space Telescope search for the transit of the Earth-mass exoplanet α Centauri Bb

    Get PDF
    Results from exoplanet surveys indicate that small planets (super-Earth size and below) are abundant in our Galaxy. However, little is known about their interiors and atmospheres. There is therefore a need to find small planets transiting bright stars, which would enable a detailed characterization of this population of objects. We present the results of a search for the transit of the Earth-mass exoplanet α Centauri Bb with the Hubble Space Telescope (HST). We observed α Centauri B twice in 2013 and 2014 for a total of 40h. We achieve a precision of 115ppm per 6-s exposure time in a highly saturated regime, which is found to be consistent across HST orbits. We rule out the transiting nature of α Centauri Bb with the orbital parameters published in the literature at 96.6 per cent confidence. We find in our data a single transit-like event that could be associated with another Earth-sized planet in the system, on a longer period orbit. Our programme demonstrates the ability of HST to obtain consistent, high-precision photometry of saturated stars over 26h of continuous observation

    Hubble Space Telescope search for the transit of the Earth-mass exoplanet α Centauri B b

    Get PDF
    Results from exoplanet surveys indicate that small planets (super-Earth size and below) are abundant in our Galaxy. However, little is known about their interiors and atmospheres. There is therefore a need to find small planets transiting bright stars, which would enable a detailed characterization of this population of objects. We present the results of a search for the transit of the Earth-mass exoplanet α Centauri B b with the Hubble Space Telescope (HST). We observed α Centauri B twice in 2013 and 2014 for a total of 40 h. We achieve a precision of 115 ppm per 6-s exposure time in a highly saturated regime, which is found to be consistent across HST orbits. We rule out the transiting nature of α Centauri B b with the orbital parameters published in the literature at 96.6 per cent confidence. We find in our data a single transit-like event that could be associated with another Earth-sized planet in the system, on a longer period orbit. Our programme demonstrates the ability of HST to obtain consistent, high-precision photometry of saturated stars over 26 h of continuous observations

    Temperate Earth-sized planets transiting a nearby ultracool dwarf star.

    Get PDF
    Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as 'ultracool dwarfs'. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disks, there should be a large but hitherto undetected population of terrestrial planets orbiting them--ranging from metal-rich Mercury-sized planets to more hospitable volatile-rich Earth-sized planets. Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Our data suggest that 11 orbits remain possible for the third planet, the most likely resulting in irradiation significantly less than that received by Earth. The infrared brightness of the host star, combined with its Jupiter-like size, offers the possibility of thoroughly characterizing the components of this nearby planetary system

    A map of the large day-night temperature gradient of a super-Earth exoplanet.

    Get PDF
    Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths--exoplanets with masses of one to ten times that of Earth--have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 ± 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 ± 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 ± 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface

    Astro2020 science white paper:fundamental physics with brown dwarfs: the mass-radius relation

    Get PDF
    The lowest-mass stars, brown dwarfs and giant exoplanets span a minimum in the mass-radius relationship that probes the fundamental physics of extreme states of matter, magnetism, and fusion. This White Paper outlines scientific opportunities and the necessary resources for modeling and measuring the mass-radius relationship in this regime.Comment: 7 pages, submitted to Astro2020 Science White Paper cal

    Discovery of temperate Earth-sized planets transiting a nearby ultracool dwarf star

    Get PDF
    We report the discovery of three short-period Earth-sized planets transiting a nearby ultracool dwarf star using data collected by the Liège TRAPPIST telescope, located in la Silla (Chile). TRAPPIST-1 is an isolated M8.0±0.5-type dwarf star at a distance of 12.0±0.4 parsecs as measured by its trigonometric parallax, with an age constrained to be > 500 Myr, and with a luminosity, mass, and radius of 0.05%, 8% and 11.5% those of the Sun, respectively. The small size of the host star, only slightly larger than Jupiter, translates into Earth-like radii for the three discovered planets, as deduced from their transit depths. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Several orbits remain possible for the third planet based on our current data. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system

    WASP-80b has a dayside within the T-dwarf range

    Get PDF
    WASP-80b is a missing link in the study of exoatmospheres. It falls between the warm Neptunes and the hot Jupiters and is amenable for characterization, thanks to its host star's properties. We observed the planet through transit and during occultation with Warm Spitzer. Combining our mid-infrared transits with optical time series, we find that the planet presents a transmission spectrum indistinguishable from a horizontal line. In emission, WASP-80b is the intrinsically faintest planet whose dayside flux has been detected in both the 3.6 and 4.5 μm Spitzer channels. The depths of the occultations reveal that WASP-80b is as bright and as red as a T4 dwarf, but that its temperature is cooler. If planets go through the equivalent of an L-T transition, our results would imply that this happens at cooler temperatures than for brown dwarfs. Placing WASP-80b's dayside into a colour-magnitude diagram, it falls exactly at the junction between a blackbody model and the T-dwarf sequence; we cannot discern which of those two interpretations is the more likely. WASP-80b's flux density is as low as GJ436b at 3.6 μm; the planet's dayside is also fainter, but bluer than HD189733Ab's nightside (in the [3.6] and [4.5]Spitzer bands). Flux measurements on other planets with similar equilibrium temperatures are required to establish whether irradiated gas giants, such as brown dwarfs, transition between two spectral classes. An eventual detection of methane absorption in transmission would also help lift that degeneracy. We obtained a second series of high-resolution spectra during transit, using HARPS. We reanalyse the Rossiter-McLaughlin effect. The data now favour an aligned orbital solution and a stellar rotation nearly three times slower than stellar line broadening implies. A contribution to stellar line broadening, maybe macroturbulence, is likely to have been underestimated for cool stars, whose rotations have therefore been systematically overestimate
    • …
    corecore