72 research outputs found

    Constructivism and learning: Active learning and constructive alignment in the Surface Geochemistry course

    Get PDF

    Modelling how incorporation of divalent cations affects calcite wettability–implications for biomineralisation and oil recovery

    Get PDF
    Using density functional theory and geochemical speciation modelling, we predicted how solid-fluid interfacial energy is changed, when divalent cations substitute into a calcite surface. The effect on wettability can be dramatic. Trace metal uptake can impact organic compound adsorption, with effects for example, on the ability of organisms to control crystal growth and our ability to predict the wettability of pore surfaces. Wettability influences how easily an organic phase can be removed from a surface, either organic compounds from contaminated soil or crude oil from a reservoir. In our simulations, transition metals substituted exothermically into calcite and more favourably into sites at the surface than in the bulk, meaning that surface properties are more strongly affected than results from bulk experiments imply. As a result of divalent cation substitution, calcite-fluid interfacial energy is significantly altered, enough to change macroscopic contact angle by tens of degrees. Substitution of Sr, Ba and Pb makes surfaces more hydrophobic. With substitution of Mg and the transition metals, calcite becomes more hydrophilic, weakening organic compound adsorption. For biomineralisation, this provides a switch for turning on and off the activity of organic crystal growth inhibitors, thereby controlling the shape of the associated mineral phase

    Ungdomstræneren som kulturel leder : Et multicase pilotstudie af tre træneres praksis

    Get PDF
    Formålet var at analysere, hvad der kendetegner tre ungdomstræneres praksis som kulturel ledelse, og at afprøve organisationspsykologen Edgar Scheins begrebsapparat som ramme. Data blev genereret gennem observationer og formelle interviews med trænerne. Cross-case analysen (Stake, 2006) viste bl.a., at trænerne skabte og opretholdt gruppekulturer gennem anerkendelse af bestemt adfærd og ved at fremhæve rollemodeller i gruppen. Opfattelsen af deres primære opgave og funktion som træner prægede også gruppekulturen. Scheins begrebsapparat var delvist brugbart til at analysere trænere som kulturelle ledere, men der er behov for at udvikle og kontekstualisere en undersøgelsesramme til studier af kulturel ledelse i unges idrætsmiljøer

    Experimental observations of CO2-water-basaltic glass interaction in a large column reactor experiment at 50 °C

    Get PDF
    Publisher's version (útgefin grein).Mineralization of water dissolved carbon dioxide injected into basaltic rocks occurs within two years in field-scale settings. Here we present the results from a CO2-water-basaltic glass laboratory experiment conducted at 50 °C and 80 bar pressure in a Ti high-pressure column flow reactor. We explore the possible sequence of saturation with Fe-Mg-Ca-carbonate minerals versus Fe-Mg-clay and Ca-zeolite saturation states, which all compete for divalent cations and pore space during injection of CO2 into basaltic rocks. Pure water (initially with atmospheric CO2) – basaltic glass reactions resulted in high pH (9–10) water saturated with respect to Mg-Fe-clays (saponites), Ca-zeolites, and Ca-carbonate. As CO2-charged water (˜20 mM) entered the column and mixed with the high pH water, all the Fe-Mg-Ca-carbonates became temporarily supersaturated along with clays and zeolites. Injected waters with dissolved CO2 reached carbonate mineral saturation within 12 h of fluid-rock interaction. Once the pH of the outflow water stabilized below 6, siderite was the only thermodynamically stable carbonate throughout the injection period, although no physical evidence of its precipitation was found. When CO2 injection stopped while continuing to inject pure water, pH rose rapidly in the outflow and all carbonates became undersaturated, whereas zeolites became more saturated and Mg-Fe-saponites supersaturated. Resuming CO2 injection lowered the pH from >8 to about 6, resulting in an undersaturation of the clays and Na-zeolites. These results along with geochemical modelling underscore the importance of initial pCO2 and pH values to obtain a balance between the formation of carbonates versus clays and zeolites. Moreover, modelling indicates that pauses in CO2 injection while still injecting water can result in enhanced large molar volume Ca-Na-zeolite and Mg-Fe-clay formation that consumes pore space within the rocks.This publication has been produced with support from the European Commission through the projects CarbFix (EC Project 283148), CO2-React (EC Project 317235), and S4CE (EC Project 764810). The authors would like to thank editor Charles Jenkins for handling the manuscript and to the anonymous reviewers for their constructive comments that helped improve the manuscript. Special thanks to Giulia Alessandrini for her indispensable assistance in running the experiment, Sydney Gunnarson for material preparation, and Þorsteinn Jónsson for preparing, setting up, and taking apart the column. We would also like to acknowledge Rebecca Neely and Tobias Linke for their help in the laboratory in addition to Eric Oelkers, Peter Rendel, and the CarbFix group for their support.Peer Reviewe

    The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland

    Full text link
    In situ carbonation of basaltic rocks could provide a long-term carbon storage solution, which is essential for the success and public acceptance of carbon storage. To demonstrate the viability of this carbon storage solution, 175 tonnes (t) of pure CO2 and 73 tonnes (t) of a 75% CO2-24% H2S-1% H2-gas mixture were sequentially injected into basaltic rocks at the CarbFix site at Hellisheidi, SW-Iceland from January to August 2012. This paper reports the chemistry and saturation states with respect to potential secondary minerals of sub-surface fluids sampled prior to, during, and after the injections. All gases were dissolved in water during their injection into permeable basalts located at 500–800 m depth with temperatures ranging from 20 to 50 °C. A pH decrease and dissolved inorganic carbon (DIC) increase was observed in the first monitoring well, HN-04, about two weeks after each injection began. At storage reservoir target depth, this diverted monitoring well is located ∼125 m downstream from the injection well. A significant increase in H2S concentration, however, was not observed after the second injection. Sampled fluids from the HN-04 well show a rapid increase in Ca, Mg, and Fe concentration during the injections with a gradual decline in the following months. Calculations indicate that the sampled fluids are saturated with respect to siderite about four weeks after the injections began, and these fluids attained calcite saturation about three months after each injection. Pyrite is supersaturated prior to and during the mixed gas injection and in the following months. In July 2013, the HN-04 fluid sampling pump broke down due to calcite precipitation, verifying the carbonation of the injected CO2. Mass balance calculations, based on the recovery of non-reactive tracers co-injected into the subsurface together with the acid-gases, confirm that more than 95% of the CO2 injected into the subsurface was mineralised within a year, and essentially all of the injected H2S was mineralised within four months of its injection. These results demonstrate the viability of the in situ mineralisation of these gases in basaltic rocks as a long-term and safe storage solution for CO2 and H2S
    corecore