72 research outputs found

    Role of ADAMTS (A Disintegrin and Metalloproteinase With Thrombospondin Motifs)-5 in Aortic Dilatation and Extracellular Matrix Remodeling.

    Get PDF
    OBJECTIVE: Thoracic aortic aneurysm (TAA), a degenerative disease of the aortic wall, is accompanied by changes in the structure and composition of the aortic ECM (extracellular matrix). The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family of proteases has recently been implicated in TAA formation. This study aimed to investigate the contribution of ADAMTS-5 to TAA development. APPROACH AND RESULTS: A model of aortic dilatation by AngII (angiotensin II) infusion was adopted in mice lacking the catalytic domain of ADAMTS-5 (Adamts5Δcat). Adamts5Δcat mice showed an attenuated rise in blood pressure while displaying increased dilatation of the ascending aorta (AsAo). Interestingly, a comparison of the aortic ECM from AngII-treated wild-type and Adamts5Δcat mice revealed versican as the most upregulated ECM protein in Adamts5Δcat mice. This was accompanied by a marked reduction of ADAMTS-specific versican cleavage products (versikine) and a decrease of LRP1 (low-density lipoprotein-related protein 1). Silencing LRP1 expression in human aortic smooth muscle cells reduced the expression of ADAMTS5, attenuated the generation of versikine, but increased soluble ADAMTS-1. A similar increase in ADAMTS-1 was observed in aortas of AngII-treated Adamts5Δcat mice but was not sufficient to maintain versican processing and prevent aortic dilatation. CONCLUSIONS: Our results support the emerging role of ADAMTS proteases in TAA. ADAMTS-5 rather than ADAMTS-1 is the key protease for versican regulation in murine aortas. Further studies are needed to define the ECM substrates of the different ADAMTS proteases and their contribution to TAA formation

    Vitamin B12 supplementation in diabetic neuropathy: a 1-year, randomized, double-blind, placebo-controlled trial

    Get PDF
    Aim: To investigate the effect of normalizing vitamin B12 (B12) levels with oral B12 (methylcobalamin) 1000 Όg/day for one year in patients with diabetic neuropathy (DN). Patients and methods: In this prospective, double-blind, placebo-controlled trial, 90 patients with type 2 diabetes on metformin for at least four years and both peripheral and autonomic DN were randomized to an active treatment group (n = 44) receiving B12 and a control group (n = 46) receiving a placebo. All patients had B12 levels less than 400 pmol/L. Subjects underwent measurements of sural nerve conduction velocity (SNCV), sural nerve action potential (amplitude) (SNAP), and vibration perception threshold (VPT), and they performed cardiovascular autonomic reflex tests (CARTs: mean circular resultant (MCR), Valsalva test, postural index, and orthostatic hypotension). Sudomotor function was assessed with the SUDOSCAN that measures electrochemical skin conductance in hands and feet (ESCH and ESCF, respectively). We also used the Michigan Neuropathy Screening Instrument Questionnaire and Examination (MNSIQ and MNSIE, respectively) and questionnaires to evaluate quality of life (QoL) and level of pain (pain score). Results: B12 levels increased from 232.0 ± 71.8 at baseline to 776.7 ± 242.3 pmol/L at follow-up, p < 0.0001, in the active group but not in the control group. VPT, MNSIQ, QoL, pain score, SNCV, SNAP, and ESCF significantly improved in the active group (p < 0.001, p = 0.002, p < 0.0001, p < 0.000, p < 0.0001, p < 0.0001, and p = 0.014, respectively), whereas CARTS and MNSIE improved but not significantly. MCR, MNSIQ, SNCV, SNAP, and pain score significantly deteriorated in the control group (p = 0.025, p = 0.017, p = 0.045, p < 0.0001, and p < 0.0001, respectively). Conclusions: The treatment of patients with DN with 1 mg of oral methylcobalamin for twelve months increased plasma B12 levels and improved all neurophysiological parameters, sudomotor function, pain score, and QoL, but it did not improve CARTS and MNSIE

    Novel Cardiac-Specific Biomarkers and the Cardiovascular Continuum

    Get PDF
    The concept of the cardiovascular continuum, introduced during the early 1990s, created a holistic view of the chain of events connecting cardiovascular-related risk factors with the progressive development of pathological-related tissue remodelling and ultimately, heart failure and death. Understanding of the tissue-specific changes, and new technologies developed over the last 25–30 years, enabled tissue remodelling events to be monitored in vivo and cardiovascular disease to be diagnosed more reliably than before. The tangible product of this evolution was the introduction of a number of biochemical markers such as troponin I and T, which are now commonly used in clinics to measure myocardial damage. However, biomarkers that can detect specific earlier stages of the cardiovascular continuum have yet to be generated and utilised. The majority of the existing markers are useful only in the end stages of the disease where few successful intervention options exist. Since a large number of patients experience a transient underlying developing pathology long before the signs or symptoms of cardiovascular disease become apparent, the requirement for new markers that can describe the early tissue-specific, matrix remodelling process which ultimately leads to disease is evident. This review highlights the importance of relating cardiac biochemical markers with specific time points along the cardiovascular continuum, especially during the early transient phase of pathology progression where none of the existing markers aid diagnosis

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future

    Plasma proteome changes in cardiovascular disease patients: novel isoforms of apolipoprotein A1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this proteomic study was to look for changes taking place in plasma proteomes of patients with acute myocardial infarction (AMI), unstable angina pectoris (UAP), and stable angina pectoris (SAP).</p> <p>Methods</p> <p>Depleted plasma proteins were separated by 2D SDS-PAGE (pI 4-7), and proteomes were compared using Progenesis SameSpots statistical software. Proteins were identified by nanoLC-MS/MS. Proteins were quantified using commercial kits. Apolipoprotein A1 was studied using 1D and 2D SDS-PAGE, together with western blotting.</p> <p>Results</p> <p>Reciprocal comparison revealed 46 unique, significantly different spots; proteins in 34 spots were successfully identified and corresponded to 38 different proteins. Discrete comparisons of patient groups showed 45, 41, and 8 significantly different spots when AMI, UAP, and SAP were compared with the control group. On the basis of our proteomic data, plasma levels of two of them, alpha-1 microglobulin and vitamin D-binding protein, were determined. The data, however, failed to prove the proteins to be suitable markers or risk factors in the studied groups. The plasma level and isoform representation of apolipoprotein A1 were also estimated. Using 1D and 2D SDS-PAGE, together with western blotting, we observed extra high-molecular weight apolipoprotein A1 fractions presented only in the patient groups, indicating that the novel high-molecular weight isoforms of apolipoprotein A1 may be potential new markers or possible risk factors of cardiovascular disease.</p> <p>Conclusion</p> <p>The reported data show plasma proteome changes in patients with AMI, UAP, and SAP. We propose some apolipoprotein A1 fractions as a possible new disease-associated marker of cardiovascular disorders.</p

    Diabetes and heart failure: Is it hyperglycemia or hyperinsulinemia?

    No full text
    The cardiac effects of exogenously administered insulin for the treatment of diabetes (DM) have recently attracted much attention. In particular, it has been questioned whether insulin is the appropriate treatment for patients with type 2 diabetes mellitus and heart failure. While several old and some new studies suggested that insulin treatment has beneficial effects on the heart, recent observational studies indicate associations of insulin treatment with an increased risk of developing or worsening of pre-existing heart failure and higher mortality rates. However, there is actually little evidence that the associations of insulin administration with any adverse outcomes are causal. On the other hand, insulin clearly causes weight gain and may also cause serious episodes of hypoglycemia. Moreover, excess of insulin (hyperinsulinemia), as often seen with the use of injected insulin, seems to predispose to inflammation, hypertension, dyslipidemia, atherosclerosis, heart failure, and arrhythmias. Nevertheless, it should be stressed that most of the data concerning the effects of insulin on cardiac function derive from in vitro studies with isolated animal hearts. Therefore, the relevance of the findings of such studies for humans should be considered with caution. In the present review, we summarize the existing data about the potential positive and negative effects of insulin on the heart and attempt to answer the question whether any adverse effects of insulin or the consequences of hyperglycemia are more important and may provide a better explanation of the close association of DM with heart failure
    • 

    corecore