2,552 research outputs found

    Numerical analysis of the master equation

    Full text link
    Applied to the master equation, the usual numerical integration methods, such as Runge-Kutta, become inefficient when the rates associated with various transitions differ by several orders of magnitude. We introduce an integration scheme that remains stable with much larger time increments than can be used in standard methods. When only the stationary distribution is required, a direct iteration method is even more rapid; this method may be extended to construct the quasi-stationary distribution of a process with an absorbing state. Applications to birth-and-death processes reveal gains in efficiency of two or more orders of magnitude.Comment: 7 pages 3 figure

    Sandpiles with height restrictions

    Full text link
    We study stochastic sandpile models with a height restriction in one and two dimensions. A site can topple if it has a height of two, as in Manna's model, but, in contrast to previously studied sandpiles, here the height (or number of particles per site), cannot exceed two. This yields a considerable simplification over the unrestricted case, in which the number of states per site is unbounded. Two toppling rules are considered: in one, the particles are redistributed independently, while the other involves some cooperativity. We study the fixed-energy system (no input or loss of particles) using cluster approximations and extensive simulations, and find that it exhibits a continuous phase transition to an absorbing state at a critical value zeta_c of the particle density. The critical exponents agree with those of the unrestricted Manna sandpile.Comment: 10 pages, 14 figure

    Path-integral representation for a stochastic sandpile

    Full text link
    We introduce an operator description for a stochastic sandpile model with a conserved particle density, and develop a path-integral representation for its evolution. The resulting (exact) expression for the effective action highlights certain interesting features of the model, for example, that it is nominally massless, and that the dynamics is via cooperative diffusion. Using the path-integral formalism, we construct a diagrammatic perturbation theory, yielding a series expansion for the activity density in powers of the time.Comment: 22 pages, 6 figure

    Asymptotic behavior of the order parameter in a stochastic sandpile

    Full text link
    We derive the first four terms in a series for the order paramater (the stationary activity density rho) in the supercritical regime of a one-dimensional stochastic sandpile; in the two-dimensional case the first three terms are reported. We reorganize the pertubation theory for the model, recently derived using a path-integral formalism [R. Dickman e R. Vidigal, J. Phys. A 35, 7269 (2002)], to obtain an expansion for stationary properties. Since the process has a strictly conserved particle density p, the Fourier mode N^{-1} psi_{k=0} -> p, when the number of sites N -> infinity, and so is not a random variable. Isolating this mode, we obtain a new effective action leading to an expansion for rho in the parameter kappa = 1/(1+4p). This requires enumeration and numerical evaluation of more than 200 000 diagrams, for which task we develop a computational algorithm. Predictions derived from this series are in good accord with simulation results. We also discuss the nature of correlation functions and one-site reduced densities in the small-kappa (large-p) limit.Comment: 18 pages, 5 figure

    Series expansion for a stochastic sandpile

    Full text link
    Using operator algebra, we extend the series for the activity density in a one-dimensional stochastic sandpile with fixed particle density p, the first terms of which were obtained via perturbation theory [R. Dickman and R. Vidigal, J. Phys. A35, 7269 (2002)]. The expansion is in powers of the time; the coefficients are polynomials in p. We devise an algorithm for evaluating expectations of operator products and extend the series to O(t^{16}). Constructing Pade approximants to a suitably transformed series, we obtain predictions for the activity that compare well against simulations, in the supercritical regime.Comment: Extended series and improved analysi

    Quasi-stationary distributions for the Domany-Kinzel stochastic cellular automaton

    Full text link
    We construct the {\it quasi-stationary} (QS) probability distribution for the Domany-Kinzel stochastic cellular automaton (DKCA), a discrete-time Markov process with an absorbing state. QS distributions are derived at both the one- and two-site levels. We characterize the distribuitions by their mean, and various moment ratios, and analyze the lifetime of the QS state, and the relaxation time to attain this state. Of particular interest are the scaling properties of the QS state along the critical line separating the active and absorbing phases. These exhibit a high degree of similarity to the contact process and the Malthus-Verhulst process (the closest continuous-time analogs of the DKCA), which extends to the scaling form of the QS distribution.Comment: 15 pages, 9 figures, submited to PR

    N-Site approximations and CAM analysis for a stochastic sandpile

    Full text link
    I develop n-site cluster approximations for a stochastic sandpile in one dimension. A height restriction is imposed to limit the number of states: each site can harbor at most two particles (height z_i \leq 2). (This yields a considerable simplification over the unrestricted case, in which the number of states per site is unbounded.) On the basis of results for n \leq 11 sites, I estimate the critical particle density as zeta_c = 0.930(1), in good agreement with simulations. A coherent anomaly analysis yields estimates for the order parameter exponent [beta = 0.41(1)] and the relaxation time exponent (nu_|| \simeq 2.5).Comment: 12 pages, 7 figure

    Paths to Self-Organized Criticality

    Get PDF
    We present a pedagogical introduction to self-organized criticality (SOC), unraveling its connections with nonequilibrium phase transitions. There are several paths from a conventional critical point to SOC. They begin with an absorbing-state phase transition (directed percolation is a familiar example), and impose supervision or driving on the system; two commonly used methods are extremal dynamics, and driving at a rate approaching zero. We illustrate this in sandpiles, where SOC is a consequence of slow driving in a system exhibiting an absorbing-state phase transition with a conserved density. Other paths to SOC, in driven interfaces, the Bak-Sneppen model, and self-organized directed percolation, are also examined. We review the status of experimental realizations of SOC in light of these observations.Comment: 23 pages + 2 figure

    Wang-Landau sampling in three-dimensional polymers

    Full text link
    Monte Carlo simulations using Wang-Landau sampling are performed to study three-dimensional chains of homopolymers on a lattice. We confirm the accuracy of the method by calculating the thermodynamic properties of this system. Our results are in good agreement with those obtained using Metropolis importance sampling. This algorithm enables one to accurately simulate the usually hardly accessible low-temperature regions since it determines the density of states in a single simulation.Comment: 5 pages, 9 figures arch-ive/Brazilian Journal of Physic
    • …
    corecore