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We present a pedagogical introduction to self-organized criticality (SOC), unraveling its connections
with nonequilibrium phase transitions. There are several paths from a conventional critical point
to SOC. They begin with an absorbing-state phase transition (directed percolation is a familiar
example), and impose supervision or driving on the system; two commonly used methods are
extremal dynamics, and driving at a rate approaching zero. We illustrate this in sandpiles, where
SOC is a consequence of slow driving in a system exhibiting an absorbing-state phase transition with
a conserved density. Other paths to SOC, in driven interfaces, the Bak-Sneppen model, and self-
organized directed percolation, are also examined. We review the status of experimental realizations
of SOC in light of these observations.

I Introduction

The label \self-organized" is applied indiscriminately in

the current literature to ordering or pattern formation

amongst many interacting units. Implicit is the notion

that the phenomenon of interest, be it scale invariance,

cooperation, or supra-molecular organization (e.g., mi-

celles), appears spontaneously. That, of course, is just

how the magnetization appears in the Ising model; but

we don't speak of \self-organized magnetization." Af-

ter nearly a century of study, we've come to expect the

spins to organize; the zero-�eld magnetization below

Tc is no longer a surprise. More generally, spontaneous

organization of interacting units is precisely what we

seek, to explain the emergence of order in nature. We

can expect many more surprises in the quest to discover

what kinds of order a given set of interactions lead to.

All will be self-organized, there being no outside agent

on hand to impose order!

\Self-organized criticality" (SOC) carries greater

speci�city, because criticality usually does not happen

spontaneously: various parameters have to be tuned

to reach the critical point. Scale-invariance in natural

systems, far from equilibrium, isn't explained merely by

showing that the interacting units can exhibit scale in-

variance at a point in parameter space; one has to show

how the system ismaintained (or maintains itself) at the

critical point. (Alternatively one can try to show that

there is generic scale invariance, that is, that criticality

appears over a region of parameter space with nonzero

measure [1, 2].) \SOC" has been used to describe spon-

taneous scale invariance in general; this would seem to

embrace random walks, as well as fractal growth [3], dif-

fusive annihilation (A + A ! 0 and related processes),

and nonequilibrium surface dynamics [4]. Here we re-

strict the term to systems that are attracted to a criti-

cal (scale-invariant) stationary state; the chief examples

are sandpile models [5]. Another class of realizations,

exempli�ed by the Bak-Sneppen model [6], involve ex-

tremal dynamics (the unit with the extreme value of

a certain variable is the next to change). We will see

that in many examples of SOC, there is a choice be-

tween global supervision (an odd state of a�airs for a

\self-organized" system), or a strictly local dynamics in

which the rate of one or more processes must be tuned

to zero.

The sandpile models introduced by Bak, Tang and

Wiesenfeld (BTW) [5], Manna [7], and others have at-

tracted great interest, as the �rst and clearest examples

of self-organized criticality. In these models, grains of

\sand" are injected into the system and are lost at the

boundaries, allowing the system to reach a stationary
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state with a balance between input and output. The

input and loss processes are linked in a special way to

the local dynamics, which consists of activated, conser-

vative, redistribution of sand. In the limit of in�nitely

slow input, the system displays a highly uctuating,

scale-invariant avalanche-like pattern of activity. One

may associate rates h and �, respectively, with the ad-

dition and removal processes. We have to adjust these

parameters to realize SOC: it appears in the limit of h

and � ! 0+ with h=� ! 0 [1, 8, 9, 10]. (The addition

and removal processes occur in�nitely slowly compared

to the local redistribution dynamics, which proceeds

at a rate of unity. Loss is typically restricted to the

boundaries, so that �! 0 is implicit in the in�nite-size

limit.)

Questions about SOC fall into two categories. First,

Why does self-organized criticality exist? What are the

conditions for a model to have SOC? Second, the many

questions about critical behavior (exponents, scaling

functions, power-spectra, etc.) of speci�c models, and

whether these can be grouped into universality classes,

as for conventional phase transitions both in and out

of equilibrium. Answers to the second type of question

come from exact solutions [11], simulations [12], renor-

malization group analyses [13], and (one may hope)

�eld theoretical analysis. Despite these insights, asser-

tions in the literature about spontaneous or parameter-

free criticality have tended to obscure the nature of the

phase transition in sandpiles, fostering the impression

that SOC is a phenomenon sui generis, inhabiting a dif-

ferent world than that of standard critical phenomena.

In this paper we show that SOC is a phase transition to

an absorbing state, a kind of criticality that has been

well studied, principally in the guise of directed percola-

tion [14]. Connections between SOC and an underlying

conventional phase transition have also been pointed

out by Narayan and Middleton [15], and by Sornette,

Johansen and Dornic [16].

Starting with a simple example (Sec. II), we will see

that the absorbing-state transition provides the mech-

anism for SOC (Sec. III). That is, we explain the exis-

tence of SOC in sandpiles on the basis of a conventional

critical point. In Sec. IV we discuss the transforma-

tion of a conventional phase transition to SOC in the

contexts of driven interfaces, a stochastic process that

reproduces the stationary properties of directed perco-

lation, and the Bak-Sneppen model. We �nd that criti-

cality requires tuning, or equivalently, an in�nite time-

scale separation. With this essential point in mind, we

present a brief review of the relevance of SOC models

to experiments in Sec. V. Sec. VI presents a summary

of our ideas. We note that this paper is not intended

as a complete review of SOC; many interesting aspects

of the �eld are not discussed.

II A simple example

We begin with a simple model of activated random

walkers (ARW). Each site j of a lattice (with periodic

boundary conditions) harbors a number zj = 0; 1; 2::: of

random walkers. (For purposes of illustration the ring

1; :::; L will do.) Initially, N walkers are distributed

randomly amongst the sites. Each walker moves inde-

pendently, without bias, to one of the neighboring sites

(i.e., from site j to j + 1 or j � 1, with site L + 1 � 1

and 0 � L), the only restriction being that an isolated

walker (at a site with zj = 1) is paralyzed until such

time as another walker or walkers joins it. The active

sites (with zj � 2) follow a Markovian (sequential) dy-

namics: each active site loses, at a rate 1, a pair of walk-

ers, which jump independently to one of the neighbors

of site j. (Thus in one dimension there is a probability

of 1/2 that each neighbor gains one walker, while with

probability 1/4 both walkers hop to the left, or to the

right.)

The model we have just de�ned is characterized by

the number of lattice sites, Ld, and the number of par-

ticles, N . It has two kinds of con�gurations: active, in

which at least one site has two or more walkers, and

absorbing, in which no site is multiply occupied, ren-

dering all the walkers immobile [17]. For N > Ld only

active con�gurations are possible, and since N is con-

served, activity continues forever. For N � Ld there

are both active and absorbing con�gurations, the latter

representing a shrinking fraction of con�guration space

as the density � � N=Ld ! 1. Given that we start

in an active con�guration (a virtual certainty for an

initially random distribution with � > 0 and L large),

will the system remain active inde�nitely, or will it fall

into an absorbing con�guration? For small � it should

be easy for the latter to occur, but it seems reasonable

that for su�ciently large densities (still < 1), the like-

lihood of reaching an absorbing con�guration becomes

so small that the walkers remain active inde�nitely. In

other words, we expect sustained activity for densities

greater than some critical value �c, with �c < 1.

A simple mean-�eld theory provides a preliminary

check of this intuition. Consider activated random

walkers in one dimension. For a site to gain parti-

cles, it must have an active (z � 2) nearest neighbor.

Since active sites release a pair of walkers at a rate of

unity, a given site receives a single walker from an ac-

tive neighbor at rate 1/2, and a pair of walkers at rate

1/4. Thus the rate of transitions that take zj to zj+1 is

[P (zj; zj+1 � 2) + P (zj; zj�1 � 2)]=2; transitions from
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zj to zj + 2 occur at half this rate. In the mean-�eld

approximation we ignore correlations between di�erent

sites, and factorize the joint probability into a product:

P (z; z0 � 2) = �z�a, where �z is the fraction of sites

with occupation z and �a =
P

z�2 �z is the fraction of

active sites. Using this factorization, we can write a set

of equations for the site densities:

c

d�z
dt

= �a(�z�1 � �z) +
1

2
�a(�z�2 � �z) + �z+2 � �z�2�z ; (z = 0; 1; 2:::); (1)

d

where �n = 0 for n < 0 and is one otherwise. The

�nal two terms represent active sites losing a pair of

walkers. It is easy to see that the total probability, and

the density � =
P

z z�z are conserved by the mean-�eld

equations. This in�nite set of coupled equations can be

integrated numerically if we impose a cuto� at large z.

(This is justi�ed by the �nding that �z decays expo-

nentially for large z.) The mean-�eld theory predicts

a continuous phase transition at �c = 1=2. For � < �c
the only stationary state is the absorbing one, �a = 0,

while for � > �c the active-site density grows / ���c. A

two-site approximation (in which we write equations for

the fraction �z;z0 of nearest-neighbor pairs with given

heights, but factorize joint probabilities involving three

or more sites), yields �c = 0:75.

Figure 1. Stationary density � of active sites versus density
of walkers � in one-dimensional ARW. The inset is a loga-
rithmic plot of the same data, where � = � � �c. The slope
of the straight line is 0.43.

The existence of a continuous phase transition is

con�rmed in Monte Carlo simulations, which yield �c '

0:9486 in one dimension, and �c ' 0:7169 in two dimen-

sions. Fig. 1 shows how the stationary density of active

sites �a depends on �; we see �a growing continuously

from zero at �c. (The points represent estimated densi-

ties for L !1, based on simulation data for L = 100

| 5000.) The inset shows that the active-site density

follows a power law, �a � (�� �c)�, with � = 0:43(1); a

�nite-size scaling analysis con�rms this result [18]. In

summary, activated random walkers exhibit a contin-

uous phase transition from an absorbing to an active

state as the particle density is increased above �c, with

�c strictly less than 1. (It has yet to be shown rigor-

ously that the active-site density in the ARW model is

singular at �c, in the in�nite-size limit; our numerical

results are fully consistent with the existence of such a

singularity.)

II.1 Absorbing-State Phase Transitions

Absorbing-state phase transitions are well known

in condensed matter physics, and population and epi-

demic modeling [19]. The simplest example, which may

be thought of as the \Ising model" of this class of sys-

tems, is the contact process [20]. Again we have a lattice

of Ld sites, each of which may be occupied (active) or

vacant. Occupied sites turn vacant at a rate of unity;

vacant sites become occupied at a rate of (�=2d)no
where no is the number of occupied nearest neighbors

(the factor 2d represents the number of nearest neigh-

bors). There is a unique absorbing con�guration: all

sites vacant. For � su�ciently small, the system will

eventually fall into the absorbing state, while for large

� an active stationary state can be maintained. Letting

� represent the density of occupied sites, the mean-�eld

theory analogous to the one formulated above for acti-

vated random walkers reads:

d�

dt
= (� � 1)� � ��2 : (2)

This predicts a continuous phase transition (from � � 0

to � = 1 � ��1 in the stationary state) at �c = 1.

Rigorous analyses [21, 22] con�rm the existence of a

continuous phase transition at a critical value �c, in

any dimension d � 1. Simulations and series analyses

yield �c = 3:29785(2) in one dimension. This model,

and its continuous-update counterpart, directed perco-

lation (DP; see Sec. IV), have been studied extensively.
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The critical exponents are known to good precision for

d = 1, 2, and 3; the upper critical dimension dc = 4.

There is, in addition, a well established �eld theory for

this class of models [23, 24]:

@�

@t
= r2� � a�� b�2 + �(x; t) : (3)

Here �(x; t) is a local particle density, and �(x; t) is a

Gaussian noise with autocorrelation

h�(x; t)�(x0; t0)i = ��(x; t)�(x� x0)�(t � t0) : (4)

That h�2i is linear in the local density follows from the

fact that the numbers of events (creation and annihila-

tion) in a given region are Poissonian random variables,

so that the variance equals the expected value. (The

noise must vanish when � = 0 for the latter to be an ab-

sorbing state!) This �eld theory serves as the basis for a

strong claim of universality [23, 25]: Continuous phase

transitions to an absorbing state fall generically in the

universality class of directed percolation. (It is under-

stood that the models for which we expect DP-like be-

havior have short-range interactions, and are not sub-

ject to special symmetries or conservation laws beyond

the simple translation-invariance of the contact process.

Models subject to a conservation law are known to have

a di�erent critical behavior [26].)

The activated random walkers model resembles the

contact process in having an absorbing-state phase

transition. We should note, however, two important

di�erences between the models. First, ARW presents

an in�nite number (2L
d

, to be more precise) of ab-

sorbing con�gurations, while the CP has but one. In

fact, particle models in which the number of absorb-

ing con�gurations grows exponentially with the system

size have also been studied intensively. The simplest

example is the pair contact process, in which both el-

ementary processes (creation and annihilation) require

the presence of a nearest-neighbor pair of particles [27].

In one dimension, a pair at sites i and i + 1 can either

annihilate, at rate p, or produce a new particle at ei-

ther i� 1 or i+ 2, at rate 1� p (provided the selected

site is vacant). This model shows a continuous phase

transition from an active state for p < pc to an absorb-

ing state above pc. The static critical behavior again

belongs to the DP universality class, but the critical ex-

ponents associated with spreading of activity from an

initially localized region are nonuniversal, varying con-

tinuously (in one dimension) with the particle density

in the surrounding region [28].

A second important di�erence between ARW and

the CP and PCP is that the former is subject to a

conservation law (the number of walkers cannot change

from its initial value). In a �eld-theoretic description

of ARW we will therefore need (at least) two �elds: the

local density �(x; t) of active sites, and the local parti-

cle density �(x; t); the latter is frozen in regions where

� = 0. The evolution of � is coupled to � because the

particle density controls existence and level of activity

in the ARW model.

Given that absorbing-state phase transitions fall

generically in the universality class of directed perco-

lation, it is natural to ask whether this is the case for

activated random walkers as well. The answer, appar-

ently, is \No." The critical exponent � for ARW is,

as we noted above, 0.43, while for one-dimensional DP

� = 0:2765 [29]; the other critical exponents di�er as

well [18]. While the reason for this di�erence is not un-

derstood, it appears, at least, to be consistent with the

existence of a conserved �eld in ARW.

To summarize, our simple model of activated ran-

domwalkers has an absorbing-state phase transition, as

does the contact process, directed percolation and the

PCP. All possess the same basic phase diagram: active

and inactive phases separated by a continuous phase

transition at a critical value of a \temperature-like"

parameter (� in ARW, � in the CP). But ARW pos-

sesses an in�nite number of absorbing con�gurations,

and the evolution of its order parameter (the active-

site density) is coupled to a conserved density �. The

latter presumably underlies its belonging to a di�erent

universality class than DP.

III Activated Random Walkers

and Sandpiles

The activated random walkers model possesses a con-

ventional critical point: we have to tune the parame-

ter � to its critical value. What has it got to do with

self-organized criticality? The answer is that ARW has

essentially the same local dynamics as a model known

to exhibit SOC, namely, the Manna sandpile [7]. In

Manna's sandpile, the redistribution dynamics runs in

parallel: at each time step, all of the sites with z � 2

simultaneously liberate two walkers, which jump ran-

domly to nearest neighbor sites. This may result in a

new set of active sites, which relax at the next time

step, and so on. (Time advances by one unit at each

lattice update, equivalent to the unit relaxation rate

of an active site in ARW.) We de�ned ARW with se-

quential dynamics as this makes it a Markov process

with local transitions in con�guration space, like a ki-

netic Ising model. There is of course nothing wrong

in de�ning ARW with parallel dynamics; it too has an

absorbing-state phase transition.



Brazilian Journal of Physics, vol. 30, no. 1, Mar�co, 2000 31

There is a much more fundamental di�erence be-

tween the Manna sandpile and the ARWmodel: the for-

mer allows addition and loss of walkers. Recall that we

de�ned the ARW with periodic boundary conditions;

walkers can never leave the system. In the sandpile

walkers may exit from one of the boundary sites. (On

the square lattice, for example, a walker at an edge site

has a probability of 1/4 to leave the system at the next

step.) If we allow walkers to leave, then eventually the

system will reach an absorbing con�guration. When

this happens, we add a new walker at a randomly cho-

sen site. This innocent-sounding prescription | add

a walker when and only when all other activity ceases

| carries the in�nite time scale separation essential to

the appearance of SOC in sandpiles. The sequence of

active con�gurations between two successive additions

is known as an avalanche; avalanches may involve any

number of sites, from zero (no topplings) up to the en-

tire system.

Manna showed that his model reaches a stationary

state in which avalanches occur on all scales, up to the

size of the system, and follow a power-law distribution,

P (s) � s�� , for s� sc. (Here s is the number of trans-

fer or toppling events in a given avalanche, and sc � LD

is a cuto� associated with the �nite system size.) In

other words, the Manna sandpile, like the models de-

vised by Bak, Tang and Wiesenfeld and others, exhibits

scale invariance in the stationary state.

We know that ARW, which has the same local dy-

namics as the Manna sandpile, shows scale invariance

when (and only when) the density � = �c. So in the

stationary state of the Manna model, the density is

somehow attracted to its critical value. How does it

happen? The mechanism of SOC depends upon a par-

ticular relation between the input and loss processes,

and the conventional absorbing-state phase transition

in the model with a �xed number of particles. Walkers

cannot enter the system while it is active, though they

may of course leave upon reaching the boundary. In the

presence of activity, then, � > �c and d�=dt < 0. In the

absence of activity there is addition, but no loss of walk-

ers, so � < �c implies d�=dt > 0. Evidently, the only

possible stationary value for the density in the sandpile

is �c! Of course, it is possible to have a low level of

activity locally, in a region with � < �c, but under such

conditions activity cannot propagate or be sustained.

(One can similarly construct absorbing con�gurations

with � > �c, but these are unstable to addition of walk-

ers, or the propagation of activity from outside.) In the

in�nite-size limit, the stationary activity density is zero

for � < �c, and positive for � > �c, ensuring that � is

pinned at �c, when loss is contingent upon activity, and

addition upon its absence.

That the Manna sandpile, in two or three dimen-

sions, with parallel dynamics, has a scale-invariant

avalanche distribution is well known [7]. Here we note

that the same holds for the one-dimensional version,

with random sequential dynamics. Fig. 2 shows the

probability distribution for the avalanche size (the total

number of topplings) when we modify ARW to include

loss of walkers at the boundaries, and addition at a

randomly chosen site, when the system falls into an ab-

sorbing con�guration. The distribution follows a power

law, P (s) � s��s , over a wide range of avalanche sizes

and durations; there is, as expected, an exponential

cuto� sc � LDs for events larger than a characteristic

value associated with the �nite size of the lattice. (Our

best estimates are �s = 1:10(2) and D = 2.21(1).) The

upper inset of Fig. 2 shows that the stationary density

approaches �c, the location of the absorbing-state phase

transition, as L!1. It is also interesting to note that,

in contrast with certain deterministic one-dimensional

sandpile models [30, 31], the present example appears

to exhibit �nite-size scaling, as shown in the lower inset

of Fig. 2.

Figure 2. Stationary avalanche-size distribution in the one-
dimensional Manna sandpile with sequential dynamics, for
L = 500, 1000, 2000, and 5000 (left to right) . Lower inset:
�nite-size scaling plot of the data in the main graph, lnP �

versus ln s�, with s� � L�2:21s and P � � L2:43P . Upper
inset: stationary density � in the inner 10% of the system,
plotted versus 1=L. The diamond on the � axis is the critical
density of ARW.

III.1 A Recipe for SOC

The connection between activated random walkers

and the Manna sandpile suggests the following recipe

for SOC. Start with a system having a continuous

absorbing-state phase transition at a critical value of
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a density �. This density should represent the global

value of a local dynamical variable conserved by the dy-

namics. Add to the conservative local dynamics (1) a

process for increasing the density in in�nitesimal steps

(� ! � + d�) when the local dynamics reaches an ab-

sorbing con�guration, and (2) a process for decreasing

the density at an in�nitesimal rate while the system is

active. Run the system until it reaches the stationary

state; it is now ready to display scale invariance.

Let's see how these elements operate in the Manna

sandpile. We started with activated random walkers,

which does indeed display a continuous absorbing-state

transition as a function the density � of walkers; this

density, moreover, is conserved. To this we added the

input of one walker (� ! � + 1=Ld in d dimensions),

when the system is inactive. We then broke the transla-

tional symmetry of the ARW model to de�ne boundary

sites, and allowed walkers at the boundary to leave the

system. The latter implies a loss rate d�=dt / �L�1�b,

where �b is the activity density at the boundary sites.

The conditions of our recipe are satis�ed when L!1,

which we needed anyway, to have a proper phase tran-

sition in the original model.

Now we can examine the ingredients one by one.

First, the phase transition in the original model should

be to an absorbing state, because our input and loss

steps are conditioned on the absence or presence of ac-

tivity. Second, the temperature-like parameter control-

ling the transition should be a conserved density. So the

contact process and PCP aren't suitable starting points

for SOC, because the control parameter � isn't a dy-

namical variable. (To self-organize criticality in the CP,

we'd have to change � itself, depending on the absence

of presence of activity. But this is tuning the param-

eter by hand!) Third, we need to change the density

� in in�nitesimal steps, else we will always be jump-

ing between values above or below �c without actually

hitting the critical density. The same thing will hap-

pen, incidentally, if we start out with a model that has

a discontinuous transition (with attendant hysteresis)

between an active and an absorbing state; this yields

self-organized stick-slip behavior.

The basic ingredients of our recipe are an absorbing-

state phase transition, and a method for forcing the

model to its critical point, by adding (removing) par-

ticles when the system is frozen (active). Following

the recipe, the transformation of a conventional critical

point to a self-organized one does not seem surprising

[32].

III.2 Firing the Baby-Sitter

The reader may have noted a subtle inconsistency in

the above discussion. We rejected the contact process

as a suitable candidate for SOC because changing the

parameter � on the basis of the current state (active or

frozen) amounts to tuning. Cannot the same be said

for adding walkers in the Manna sandpile? Somehow,

a dynamics of walkers entering and leaving the system

seems more \natural" than wholesale �ddling with a

parameter. But who is going to watch for activity, to

know when to add a particle? A system managed by

a supervisor can hardly be called \self-organized!" If

we want to avoid building a supervisor or baby-sitter

into the model, we had better say that addition goes

on continuously, at rate h, and that SOC is realized in

the limit h ! 0+ [9, 10]. (The original sandpile de�-

nitions have a baby-sitter. Simulations, in particular,

have a live-in baby-sitter to decide the next move. Ad-

dition at rate h! 0+ is a supervisor-free interpretation

of the dynamics [33].) In the recipe for SOC without

baby-sitters, we replace addition (1) above with (1'):

allow addition at rate h, independent of the state of the

system, and take h ! 0+. (There is no problem with

the removal step: dissipation is associated with activ-

ity, which is local.) We pay a price when we �re the

baby-sitter: there is now a parameter h in the model,

which has to be tuned to zero. Evidently, sandpiles don't

exhibit generic scale invariance, but rather, scale invari-

ance at a point in parameter space. This is consistent

with Grinstein's de�nition of SOC, which requires an

in�nite separation of time scales from the outset [1].

III.3 Variations

In certain respects, our recipe allows greater free-

dom than was explored in the initial sandpile models.

There is no special reason, for example, why loss of

walkers has to occur at the boundaries. We simply

require that activity be attended by dissipation at an

in�nitesimal rate. SOC has, indeed, been demonstrated

in translation-invariant models with a uniform dissipa-

tion rate �� when �! 0+[9, 34]. In the original sandpile

models, addition takes place with equal probability at

any site, but restricting addition to a subset of the lat-

tice will still yield SOC.

Our recipe allows a tremendous amount of freedom

for the starting model; the only restriction is that it

possess an absorbing-state critical point as a function

of a conserved density. The dynamical variables can be

continuous or discrete. The hopping process does not

have to be symmetric, as in ARW. (In fact, directed hop-

ping yields an exactly-soluble sandpile [35].) The model

need not be de�ned on a regular lattice; any structure

with a well de�ned in�nite-size limit should do. The

dynamics, moreover, can be deterministic. Consider
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a variant of the ARW model (on a d-dimensional cu-

bic lattice) in which a site is active if it has z � 2d

walkers. At each lattice update (performed here with

parallel dynamics), every active site `topples, transfer-

ring a single walker to each of the 2d nearest-neighbor

sites. In this case the only randomness resides in the

initial con�guration. But the model again exhibits a

continuous absorbing-state phase transition as we tune

the number of walkers per site, �. Starting with this

deterministic model, our recipe yields the celebrated

Bak-Tang-Wiesenfeld sandpile.

As a further variation, we can even relax the condi-

tion that the order parameter is coupled to a conserved

�eld [36]. The price is the introduction of an additional

driving rate. This situation is exempli�ed by the forest-

�re model [37, 38]. The model is de�ned on a lattice

in which each site can be in one of three states: empty,

or occupied by a tree, either live or burning. Burning

trees turn into empty sites, and set �re to the trees at

nearest-neighbor sites, at a rate of unity. It is easy to

recognize that burning trees are the active sites: any

con�guration without them is absorbing. In an in�nite

system, there will be a critical tree density that sep-

arates a phase in which �res spread inde�nitely from

an absorbing phase with no burning trees. In a �nite

system we can study this critical point by �xing the

density of trees at its critical value [39].

So far we have no process for growing new trees.

The forest-�re propagates like an epidemic with immu-

nity: a site can only be active once, and there is no

proper steady state [40]. As in sandpiles, to obtain a

SOC state we must introduce an external driving �eld f

that introduces a small probability for each tree to catch

�re spontaneously. This driving �eld allows the system

to jump between absorbing con�gurations through the

spreading of �res. The latter, however, are completely

dissipative, i.e., the number of trees is not conserved.

Thus, if we want to reach a stationary state we must

introduce a second external driving �eld p that causes

new trees to appear. (Empty sites become occupied

by a living tree at rate p.) In this case criticality is

reached by the double slow driving condition f; p ! 0

and f=p! 0. In practice, this slow driving condition is

achieved by the usual supervisor, that stops �re ignition

and tree growth during active intervals.

III.4 Fixed-Energy Sandpiles

If someone hands us a sandpile displaying SOC, we

can identify the initial model in our recipe; it has the

same local dynamics as the SOC sandpile. Thinking

of the conserved � as an energy density, we call the

starting model a �xed-energy sandpile (FES). Thus the

activated random walkers model introduced in Sec. II

is the �xed-energy Manna sandpile, and the variant de-

scribed in the preceding subsection is the BTW FES.

Now the essential feature of the �xed-energy sandpile

is an absorbing-state phase transition. SOC appears

when we rig up the addition and removal processes to

drive the local FES dynamics to �c. To understand the

details of SOC, then, we ought to try to understand

the conventional phase transition in the corresponding

�xed-energy sandpile. This is our program for address-

ing the second class of questions (about critical expo-

nents and universality classes) mentioned in the Intro-

duction. Since �xed-energy sandpiles have a simple dy-

namics (Markovian or deterministic) without loss or ad-

dition, and are translation-invariant (when de�ned on

a regular lattice), they should be easier to study than

their SOC counterparts. The relation to absorbing-

state phase transitions leads to a proper identi�cation

of the order parameter [9], and suggests a strategy for

constructing a �eld theory of sandpiles [41]. Spreading

exponents, conventionally measured in absorbing-state

phase transitions, are related through scaling laws to

avalanche exponents, usually measured in slowly driven

systems [42, 43].

IV Other Paths to SOC

IV.1 Driven Interfaces

In this section we illustrate the central idea of the

preceding section | the transformation of a conven-

tional phase transition to a self-organized one | in a

di�erent, though related, context. We begin with a sin-

gle point mass undergoing driven, dissipative motion in

one dimension. Its position H(t) follows the equation

of motion

M
d2H

dt2
+ 

dH

dt
= F � Fp(H); (5)

where M is the mass,  _H represents viscous dissipa-

tion, F is the applied force, and Fp(H) is a position-

dependent pinning force. In many cases of interest

(i.e., domain walls or ux-lines) the motion is over-

damped and we may safely set M = 0. The pinning

force has mean zero (hFp(h)i = 0) and its autocorre-

lation hFp(h)Fp(h + y)i � �(jyj) decays rapidly with

jyj; the statistical properties of Fp are independent of

H. Assuming, as is reasonable, that Fp is bounded

(Fp � FM ), we expect the motion to continue if the

driving force F exceeds FM . Otherwise the particle

gets stuck somewhere.

Now consider an elastic interface (or a ux line)

subject to an external force, viscous damping, and a
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pinning force associated with irregularities in the sur-

rounding medium. If we discretize our interface, using

Hi(t) to represent the position, along the direction of

the driving force, of the i-th segment , the equation of

motion is


dHi

dt
= Hi+1 +Hi�1 � 2Hi(t) + F � Fp;i(Hi); (6)

where the Fp;i(Hi) are a set of independent pinning

forces with statistical properties as above. This driven

interface model has a depinning transition at a criti-

cal value, Fc, of the driving force [44]. (Eq. (6) de-

scribes a linear driven interface, so-called because it

lacks the nonlinear term / (rh)2, familiar from the

KPZ equation [4, 45].) For F < Fc the motion is even-

tually arrested (dHi=dt = 0 for all i), while for F > Fc
movement continues inde�nitely. Close to Fc there are

avalanche-like bursts of movement on all scales, in-

terspersed with intervals of near-standstill. The cor-

relation length and relaxation time diverge at Fc, as

in the other examples of absorbing-state phase tran-

sitions we've discussed above. We may take the or-

der parameter for this transition as the mean velocity,

v = hdHi=dti.

To reach the absorbing-state phase transition in the

driven interface model we need to adjust the applied

force F to its critical value Fc. Can we modify this sys-

tem so that it will be attracted to the critical state?

Note that F is not a dynamical variable, any more

than is �, in the contact process. Our sandpile recipe

doesn't seem to apply here. The crucial observation is

that we may change the nature of the driving, replacing

the constant force F with a constraint of �xed velocity,

dHi=dt = v. A �nite v corresponds to a state in the

active phase: the mean driving force hFiiv > Fc for

v > 0. When we allow v to tend to zero from above,

we approach the depinning transition. This limit can

be attained through an extremal dynamics in which we

advance, at a given step, only the element subject to

the smallest pinning force [46, 47]. (Notice that in ex-

tremal dynamics we are directly adjusting the order

parameter[16].)

To avoid the global supervision implicit in extremal

dynamics we may attach each element of the interface

to a spring, and move the other end of each spring at

speed V . Now the equations of motion read

c


dHi

dt
= Hi+1 +Hi�1 � 2Hi(t) + k(V t �Hi)� Fp;i(H); (7)

d

where k is the spring constant. For high applied veloc-

ities, the interface will in general move smoothly, with

velocity _H = V , while for low V stick-slip motion is

likely. In the overdamped regime, the amplitudes of

the slips are controlled by V and k, and the statistics

of the potential. In the limit V ! 0, the interface mo-

tion exhibits scale invariance; V plays a role analogous

to h in the sandpile. (The limits V ! 0 and k ! 0

have a particular signi�cance, since the block can ex-

plore the pinning-force landscape quasistatically.) The

�ne tuning of F to Fc in the constant-force driving has

been replaced by �ne tuning V to zero. This parame-

ter tuning corresponds, once again, to an in�nite time-

scale separation. Finally, we note that restoring inertia

(M > 0) results in a discontinuous depinning transition

with hysteresis, resulting in stick-slip motion of the sort

associated with friction [48].

Once again, we have transformed an absorbing-state

phase transition (F = Fc) into SOC by driving the sys-

tem at a rate approaching zero (V ! 0). But there

appear to be fundamental di�erences between sandpiles

and driven interfaces. In the sandpile, but not in the

driven interface, the order parameter is coupled to a

conserved density. The sandpile, moreover, does not

involve a quenched random �eld as does the driven in-

terface. Despite these apparent di�erences, close con-

nections have been suggested between the two kinds of

model [15, 49, 50, 51]. We review this correspondence

in the next subsection, following Ref. [51].

IV.2 Sandpiles and Driven Interfaces

Consider the BTW �xed-energy sandpile in two di-

mensions; let Hi(t) be the number of times site i has

toppled since time zero. To write a dynamics forHi, we

observe that the occupation zi(t) of site i di�ers from

its initial value, zi(0), due to the inow and the out-

ow of particles at this site. The outow is given by

4Hi(t), since each toppling expels four particles. The

inow can be expressed as
P

NN Hj(t): site i gains a

particle each time one of its nearest neighbors topples.

Summing the above contributions we obtain:

zi(t) = zi(0) +
X
jNNi

Hj(t) � 4Hi(t)

= zi(0) +r2
DHi(t); (8)
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where r2
D stands for the discretized Laplacian. Since

sites with zi(t) � 4 topple at unit rate, the dynamics of

Hi is given by

dHi

dt
= �[zi(0) +r2

DHi(t)� 3]

= �[r2
DHi(t) + F � Fp;i]; (9)

where dHi=dt is shorthand for the rate at which the

integer-valued variable Hi(t) jumps to Hi(t) + 1, and

�(x) = 1 for x > 0 and is zero otherwise. In the sec-

ond line, F � � � 3 and FP;i � zi(0) � �. (Recall that

� = hzi(t)i for all t.) Thinking of Hi(t) as a discretized

interface height, Eq. (9) represents an overdamped,

driven interface in the presence of columnar noise, Fp;i,

which takes independent values at each site, but does

not depend upon Hi, as it does in the interface model

discussed in the preceding subsection. We see from this

equation that tuning � to its critical value �c is anal-

ogous to tuning the driving force to Fc. If we replace

the discrete height Hi in Eq. (9) with a continuous

�eld, H(x; t) (and similarly for Fp), and replace the

�-function by its argument, we obtain the Edwards-

Wilkinson surface-growth model with columnar disor-

der, which has been studied extensively [52]. The simi-

larity between the present height representation and the

dynamics of a driven interface suggests that the criti-

cal point of the BTW �xed-energy sandpile belongs to

the universality class of linear interface depinning with

columnar noise, if the rather violent nonlinearity of the

�-function is irrelevant. (The latter remains an open

question. A height representation for the Manna sand-

pile is also possible, but is complicated by the stochastic

nature of the dynamics.)

Applying the recipe of Sec. III to the driven in-

terface, we would impose open boundaries, which drag

behind the interior as they have fewer neighbors pulling

on them; eventually the interface gets stuck. When this

happens, we ratchet up the \force" at a randomly cho-

sen site (in e�ect, Fp;j ! Fp;j � 1 at the chosen site).

The dynamics is then attracted to the critical point.

Once again, we may trade supervision (checking if the

interface is stuck) for a constant drive (F ! F + ht) in

the limit h! 0.

IV.3 Self-Organized Directed Percolation
and the Bak-Sneppen Model

Take the square lattice and rotate it by 45o, so that

each site has two nearest neighbors in the row above,

and two below. The sites exist in one of two states,

\wet" and \dry." The states of the sites in the zeroth

(top) row can be assigned at will; this de�nes the ini-

tial condition. A site in row i � 1 is obliged to be dry

if both its neighbors in row i � 1 are dry; otherwise,

it is wet with probability p, and dry with probability

1� p. This stochastic cellular automaton is called site

directed percolation. Like the contact process, it pos-

sesses an absorbing state: all sites dry in row k implies

all dry in all subsequent rows. The dynamics of site

DP can be expressed in a compact form if we de�ne the

site variable xij to be zero (one) if site j in row i is wet

(dry). The variables in the next row are given by

xi+1j = �[maxf�ij;minfxij�1; x
i
j+1gg � p] ; (10)

where the �ij are independent random variables, uni-

form on [0,1]. If both neighbors in the preceding row are

in state 1, xi+1j must also equal 1; otherwise xi+1j = 0

with probability p. Thinking of the rows as time slices,

we see that site DP is a parallel-update version of the

contact process: increasing p renders the survival and

propagation of the wet state more probable, and is anal-

ogous to increasing � in the CP. Just as the CP has a

phase transition at �c, site DP has a transition from

the absorbing to the active phase at pc ' 0:7054.

We've already dismissed the contact process (and by

extension DP) as starting models for realizing SOC via

the recipe of Sec. III. Remarkably, however, it is possi-

ble to de�ne a parameter-free stochastic process whose

stationary state reproduces the properties of criticalDP

[53, 54, 55]. This process, self-organized directed per-

colation (SODP), is obtained by replacing the discrete

variables in Eq. (10) by real variables which store the

value of one of the previous �ij. In place of Eq. (10) we

have simply

xi+1j = maxf�ij;minfxij�1; x
i
j+1gg ; (11)

Notice that parameter p has disappeared, along with

the � function. Starting from a distribution with

x0j < 1 for at least one site (but otherwise arbitrary),

this process eventually reaches a stationary state, char-

acterized by the probability density �(x). One �nds

that �(x) is zero for x < pc (the critical value of site

DP), jumps to a nonzero value (in�nity, in the ther-

modynamic limit), at pc, and decreases smoothly with

x for x > pc. The process has discovered the critical

value of site directed percolation!

Hansen and Roux explained how this works [53]: for

any p 2 [0; 1] the probability that xij < p is p if either

or both of the neighbors in the previous time slice have

values less that p (i.e., if the smaller of xi�1j�1 and xi�1j+1 is

< p), and is zero if xi�1j�1 and xi�1j+1 both exceed p. This

is exactly how the \wet" state propagates in site DP,

with parameter p, if we equate the events `site j in row
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i is wet' and `xij < p.' It follows that in the stationary

state,

Pr[xij < p] =

Z p

0

�(x)dx; (12)

equals the probability P (p) that a randomly chosen site

is wet, in the stationary state of site DP with param-

eter p. This explains why �(x) = 0 for x < pc, and

why �(pc) is in�nite in the in�nite-size limit (dP=dp is

in�nite at pc). The spatio-temporal distribution of DP

is also reproduced; for example, the joint probability

Pr[xij � pc; x
i
k � pc] decays as a power law for large

separations jj � kj. The process e�ectively studies all

values of p at once, greatly improving e�ciency in sim-

ulations. Stochastic processes corresponding to other

models (DP on other lattices, bond instead of site DP,

epidemic processes) have also been devised [54, 56]. It

seems unlikely, on the other hand, that such a real-

valued stochastic process exists for activated random

walkers or other �xed-energy sandpiles. (Of course,

such a process would be of great help in studying sand-

piles!)

SODP doesn't �t into the same scheme as sand-

piles or driven interfaces. It is a real-valued stochastic

process that generates, by construction, the probability

distribution of DP for all parameter values, including

pc. The process itself does not have a phase transi-

tion; all sites are active (except those inside a sequence

of 1's | a con�guration that will never arise sponta-

neously), since there is a �nite probability for xij to

change. SODP is self-organized in the sense that its

stationary probability density has a critical singularity,

without the need to adjust parameters. If we choose

to regard SODP as an instance of SOC, we must rec-

ognize that the path in this case is very di�erent from

that in sandpiles or driven interfaces; the system is not

being forced to its critical point by external supervi-

sion or driving. Rather, SODP is directed percolation

implemented in a di�erent (parameter-free) way. Fur-

thermore, the dynamics embodied in Eq. (11) seems a

much less realistic description of a physical system than

is driven-interface motion, or even the rather arti�cial

dynamics of a sandpile model. In the rather unlikely

event that SODP were realized in a natural system,

it would not immediately yield a scale-invariant \sig-

nal" such as avalanches or fractal patterns. The latter

would require a second process (or an observer) capa-

ble of making �ne distinctions among values of x in the

neighborhood of pc. So the kind of SOC represented

by SODP does not appear a likely explanation of scale

invariance in nature.

A (fanciful) interpretation of Eq. (11) is that xij

represents the \�tness" of an individual, which mates

with its neighbor to produce an o�spring that inherits

the �tness of the less-�t parent. This o�spring sur-

vives if her �tness exceeds that of an interloper, whose

�tness is random. (It is, to put it crudely, as if an es-

tablished population were constantly challenged by a

ux of outsiders.) Seen in this light, SODP bears some

resemblance to the evolutionary dynamics represented,

again in very abstract form, in the Bak-Sneppen model

[6]. Here, the globally minimum �tness variable, along

with its nearest neighbors, is replaced by a [0,1] random

number at each time step. (If the xij are associated with

di�erent species, then the appearance of a new species

at site i a�ects the �tness of the \neighboring" species

in the community in an unpredictable way.) This is a

kind of extremal dynamics, a scheme we've already en-

countered in the driven interface model; another famil-

iar example is invasion percolation [46]. Interestingly,

the Bak-Sneppen model shows the same qualitative be-

havior as SODP: a singular stationary distribution of

�tness values xij . The model exhibits avalanches in

which replacement of a single species provokes a large

number of extinctions.

In the interface under extremal dynamics, the height

Hi(t) cannot decrease. In the Bak-Sneppen model mo-

mentary setbacks are allowed (xj can decrease in a

given step), but individuals of low �tness will even-

tually be culled. This is like an interface model with

quenched noise such that, on advancing to a new posi-

tion, an element may encounter a force that throws it

backward, for a net negative displacement. The Bak-

Sneppen model is equivalent to a driven interface in

which the least-stable site and its neighbors are up-

dated at the same moment; we can, as before, trade

extremal dynamics for a limit of in�nitely slow driving.

Another way of obtaining the extremal dynamics of

the Bak-Sneppen model as the limit of a stochastic pro-

cess with purely local dynamics is as follows [57]. Take

a one-dimensional lattice (with periodic boundaries, for

de�niteness), and assign random numbers xj, indepen-

dent and uniform on [0,1], to each site j = 1; :::; L. The

con�guration evolves via a series of \ips," which reset

the variables at three consecutive sites. That is, when

site j ips, we replace xj�1, xj , and xj+1 with three

independent random numbers again drawn uniformly

from [0,1]. Let the rate of ipping at site j be �e��xj ,

where ��1 is a characteristic time, irrelevant to station-

ary properties. The Bak-Sneppen model is the � !1

limit of this process.

We can get some insight into the stationary behav-

ior via a simple analysis. Let p(x)dx be the probability

that xj 2 [x; x+ dx]. The probability density satis�es
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c

dp(x)

dt
= �e��xp(x)� 2

Z 1

0

e��yp(x; y)dy + 3

Z 1

0

e��yp(y)dy (13)

d

where p(x; y) is the joint density for a pair of nearest-

neighbor sites. If we invoke a mean-�eld factorization,

p(x; y) = p(x)p(y), then

dp(x)

dt
= �p(x)

�
e��x + 2I(�)

�
+ 3I(�); (14)

where

I(�) �

Z 1

0

e��yp(y)dy : (15)

The stationary solution is

pst(x) =
3

2

1� e�2�=3

1� e�2�=3 + e��x(e�=3 � 1)
: (16)

The solution is uniform on [0,1] for � = 0, as we'd ex-

pect, but in the � !1 limit we have pst = (3=2)�(x�

1=3)�(1� x). The probability density develops a step-

function singularity, as in the Bak-Sneppen model.

Not surprisingly, the mean-�eld approximation yields

a rather poor prediction for the location of the singu-

larity, which actually falls at 0.6670(1) [58]. (A two-site

approximation places the singularity at x = 1=2.) The

main point is that to realize singular behavior from a

local dynamics, we have to tune a parameter associ-

ated with the rates. Alternative mean-�eld treatments

of the Bak-Sneppen model may be found in Refs. [59]

and [60]

We can construct a model with the same local dy-

namics as that of Bak and Sneppen by replacing xj�1,

xj, and xj+1 at rate 1, if and only if xj < r. (Sites

with xj > r may only change if they have a nearest

neighbor below the cuto�.) In other words, only sites

with xj < r are active; an updated site is active with

probability r. There is an absorbing phase for small r,

separated from an active phase by a critical point at

some rc [60, 61, 62]. To get the Bak-Sneppen model

we forget about r, and declare the unique active site

in the system to be the one with the smallest value of

r. In the in�nite-size limit, the probability to �nd a

site with r < rc is zero, in the stationary state. We

see once again that in extremal dynamics we tune the

order parameter itself to zero: at each instant there is

exactly one active site, so �a = 1=L.

Grassberger and Zhang observed that the exis-

tence of SODP \casts doubt on the signi�cance of self-

organized as opposed to ordinary criticality." A similar

doubt might be prompted by our recipe for turning a

conventional critical point self-organized. Of course,

even if it is possible to explain all instances of SOC in

terms of an underlying conventional critical point, the

details of the critical behavior remain to be understood

[63]. Numerical results indicate that sandpiles, driven

interfaces, and the Bak-Sneppen model de�ne a series

of new universality classes. Furthermore, no one has

been able to derive the critical exponents of avalanches

in SOC sandpiles, even in the abelian case, where quite

a lot is known about the stationary properties [64].

V SOC and the Real World

Since SOC has been claimed to be the way \nature

works" [65], we would expect to �nd a multitude of ex-

perimental examples where this concept is useful. Orig-

inally, SOC was considered an explanation of power

laws, that it provided a means whereby a system could

self-tune its parameters. So once we saw a power law we

could claim that it was self-generated and \explained"

by SOC. The previous sections should have convinced

the reader that there are no self-tuning critical points,

although sometimes the �ne tuning is hidden, as in

sandpile models. Therefore, an \explanation" of ex-

perimentally observed power laws requires the identi�-

cation of the tuning parameters controlling the scaling,

as in any other ordinary critical point.

Here, we will restrict the discussion to experimental

examples of avalanche behavior, leaving aside fractals

and 1=f noise whose connection with SOC is rather

loose. (It is worth mentioning that a physical realiza-

tion of self-organized criticality | without avalanches,

as far as is known | has been identi�ed in liquid 4He at

the � point [66].) Following the introduction of SOC,

there were many experimental studies of avalanches,

which sometimes yielded power-law distributions over

a few decades, leading to endless discussions about the

applicability of SOC. If we accept that self-tuned criti-

cal points don't exist, then these controversies have no

basis: we have only to understand how far the system

is from the critical point, and why. This task has only
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been accomplished in a few cases; several examples re-

quire further study, both experimental and theoretical.

Soon after the sandpile model was introduced, sev-

eral experimental groups measured the size-distribution

of avalanches in granular materials. Unfortunately, real

sandpiles do not seem to be behave as the SOC sand-

pile model. Experiments show large periodic avalanches

separated by quiescent states with only limited activ-

ity [67]. While for small piles one could try to �t the

avalanche distribution with a power law over a limited

range [68], the behavior would eventually cross over, on

increasing the system size, to the one described above,

which is not scale-invariant. The reason sand does not

behave like an ideal sandpile is the inertia of the rolling

grains. As grains are added, the inclination of the pile

increases until it reaches the angle of maximal stability

�c, at which point grains start to ow. Due to iner-

tia, the ow does not stop when the inclination falls to

�c, but continues until the inclination attains the an-

gle of repose �s < �c [69]. Since the \constant force"

(i.e., with � controlled) version of the system has a �rst-

order transition, it is no wonder that criticality is not

observed in the slowly driven case. So if we want to

see power-law avalanches we have to get rid of the in-

ertia of the grains. Grains with small inertia exist and

can be bought in any grocery store: rice! A ricepile

was carefully studied in Oslo: elongated grains poured

at very small rate gave rise to a convincing power-law

avalanche distribution [70].

The previous discussion tells us that in order to ob-

serve a power-law avalanche distribution, inertia should

be negligible. As discussed in Sec. IV, the motion of do-

main walls in ferromagnets and ux lines in type II su-

perconductors is overdamped, due to eddy-current dis-

sipation; these systems are probably the cleanest exper-

imental examples of power-law distributed avalanches.

The noise produced by domain wall motion is known

as the Barkhausen e�ect, �rst detected in 1919 [71].

Since then, it has become a common non-destructive

method for testing magnetic materials, and its statis-

tical properties have been studied in detail. When the

external magnetic �eld is increased slowly, it is possible

to observe well separated avalanches, whose size dis-

tribution is a power-law over more than three decades

[72-76]. Domain walls are pushed through a disordered

medium by the magnetic �eld, so we would expect a de-

pinning transition at some critical �eld H = Hc. One

should note, however, that the \internal �eld" acting

on the domains is not the external �eld, but is cor-

rected by the demagnetizing �eld Hd ' �NM where

M is the magnetization [75, 76] and N the demagne-

tizing factor. Therefore, if we increase the external

�eld at constant rate c, the internal �eld is given by

Hint = ct�NM = ct�ky(t), where y(t) is the average

position of the domain wall and k / N . We recognize

here the recipe for SOC given in section III.1: in the

limit c ! 0 and k ! 0 we expect to reach the criti-

cal point. This fact was indeed veri�ed in experiments,

where k can be controlled by modifying the aspect ratio

of the sample [76].

In type II superconductors, when the external �eld

is increased, ux lines are nucleated at the border of

the sample and pushed inside by their mutual repul-

sion. The resulting ux density gradient, known as

the Bean state [77], bears some analogy with sand-

piles, as pointed out by De Gennes over 30 years ago

[78]. Unlike sand grains, ux lines have little inertia,

and exhibit power-law distributed avalanches [79]. It is

still unclear whether in this system a mechanism sim-

ilar to the demagnetizing �eld maintains a stationary

avalanche state, as in ferromagnets. Simulations of ux

line motion [80] have reproduced experimental results

in part, but a complete quantitative explanation of the

phenomenon is lacking.

Another broad class of phenomena where SOC has

been invoked on several occasions is that of mechani-

cal instabilities: fracture, plasticity and dislocation dy-

namics. Materials subject to an external stress release

acoustic signals that are often distributed as power laws

over a limited range: examples are the fracturing of

wood [81], cellular glass [82] and concrete [83], in hy-

drogen precipitation [84], and in dislocation motion in

ice crystals [85]. While it has often been claimed that

these experiments provided a direct evidence of SOC,

this is far from being established. In fact, fracture is an

irreversible phenomenon and often the acoustic emis-

sion increases with the applied stress [81] with a sharp

peak at the failure point. There is thus no stationary

state in fracture, and it is debated whether the failure

point can even be described as a critical point [86] or a

�rst-order transition [87]. The situation might be dif-

ferent in plastic deformation, where a steady state is

possible [88]; recent experimental measurements of dis-

location motion appear promising [85]. We may men-

tion some related phenomena in which avalanches have

been observed, and a theoretical interpretation is still

debated: martensitic transformations [89], sliding sys-

tems [90] and sheared foams [91].

Finally, it is worth mentioning that SOC has been

claimed to apply to several other situations in geo-

physics, biology and economics. We have deliberately

chosen to discuss only those examples for which ex-

perimental observations are accurate and reproducible.

Even in these cases, it is often hard to distinguish be-

tween SOC-like behavior and other mechanisms for gen-
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erating power laws. This task appears almost hopeless

in situations where only limited data sets are available,

such as for forest �res [92], or evolution [93], and re-

mains very complicated in other cases, such as earth-

quakes, as witnessed by the vast theoretical literature

on the subject [94].

VI Summary

The genesis of self-organized criticality is a continuous

absorbing-state phase transition. The dynamical sys-

tem exhibiting the latter may be continuous or discrete,

deterministic or stochastic, conservative or dissipative.

To transform a conventional phase transition to SOC,

we couple the local dynamics of the dynamical system

to an external supervisor, or to a \drive" (sources and

sinks with rates fhg). The relevant parameter(s) f�g

associated with the phase transition are controlled by

the supervisor or drive, in a way that does not make

explicit reference to f�g. One such path involves slow

driving (h ! 0), in which the interaction with the en-

vironment is contingent on the presence or absence of

activity in the system (linked to f�g via the absorbing-

state phase transition). Another, extremal dynamics,

restricts activity to the least stable element in the sys-

tem, thereby tuning the order parameter itself to zero.

Speci�c realizations of this rather abstract (and gen-

eral) scheme have been discussed in the preceding sec-

tions: sandpiles, forest �res, driven interfaces, and the

Bak-Sneppen model.

Viewed in this light, \self-organized criticality"

refers neither to spontaneous or parameter-free criti-

cality, nor to self-tuning. It becomes, rather, a useful

concept for describing systems that, in isolation, would

manifest a phase transition between active and frozen

regimes, and that are in fact driven slowly from outside.
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