Abstract

We construct the {\it quasi-stationary} (QS) probability distribution for the Domany-Kinzel stochastic cellular automaton (DKCA), a discrete-time Markov process with an absorbing state. QS distributions are derived at both the one- and two-site levels. We characterize the distribuitions by their mean, and various moment ratios, and analyze the lifetime of the QS state, and the relaxation time to attain this state. Of particular interest are the scaling properties of the QS state along the critical line separating the active and absorbing phases. These exhibit a high degree of similarity to the contact process and the Malthus-Verhulst process (the closest continuous-time analogs of the DKCA), which extends to the scaling form of the QS distribution.Comment: 15 pages, 9 figures, submited to PR

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020