156 research outputs found

    EVIDENCE FOR IDENTITY OR CLOSE ASSOCIATION OF THE Fc RECEPTOR OF B LYMPHOCYTES AND ALLOANTIGENS DETERMINED BY THE Ir REGION OF THE H-2 COMPLEX

    Get PDF
    Immunoglobulin complexes, composed of heat-aggregated human Ig, were shown to bind to mouse B lymphocytes of a variety of strains, but not to either thymocytes or thymus-derived (T) lymphocytes under a variety of conditions. It was shown that this binding was not due to either natural human antibodies against mouse nor to nonspecific binding of human Ig by mouse lymphocytes. Such complexes were shown to bind to the same sites which bind mouse antibody-antigen complexes. This site is known as the Fc receptor. The binding of Ig complexes to mouse B lymphocytes was markedly inhibited by pretreatment of the lymphocytes with anti-H-2 antisera. A series of experiments indicated the specificity of this result, including the fact that this inhibition was shown not to be due to the artifact of shedding of H-2 antibody-antigen complexes, nor to nonspecific steric inhibition. The antibodies within anti-H-2 antisera which were responsible for this inhibition were specific for alloantigens associated with the Ir region of the H-2 complex (Ia antigens). Antiserum specific for these Ia antigens produced inhibition, whereas antisera specific for antigens determined by the K or D regions of the H-2 complex did not. Evidence was obtained using F1 hybrid cells that at least some Ia antigens of both parental types are expressed on every B lymphocyte (i.e. codominant expression). These data indicate that the Fc receptor and a series of alloantigens controlled by the Ir region of the H-2 complex are identical or closely associated on the B-lymphocyte surface membrane. This observation may have implications for the mechanism of control of the immune response

    Immunotherapy of lung cancer: An update

    Get PDF
    In Germany lung cancer is the leading cause of cancer-associated death in men. Surgery, chemotherapy and radiation may enhance survival of patients suffering from lung cancer but the enhancement is typically transient and mostly absent with advanced disease; eventually more than 90% of lung cancer patients will die of disease. New approaches to the treatment of lung cancer are urgently needed. Immunotherapy may represent one new approach with low toxicity and high specificity but implementation has been a challenge because of the poor antigenic characterization of these tumors and their ability to escape immune responses. Several different immunotherapeutic treatment strategies have been developed. This review examines the current state of development and recent advances with respect to non-specific immune stimulation, cellular immunotherapy ( specific and non-specific), therapeutic cancer vaccines and gene therapy for lung cancer. The focus is primarily placed on immunotherapeutic cancer treatments that are already in clinical trial or well progressed in preclinical studies. Although there seems to be a promising future for immunotherapy in lung cancer, presently there is not standard immunotherapy available for clinical routine

    Lack of EGFR-activating mutations in European patients with triple-negative breast cancer could emphasise geographic and ethnic variations in breast cancer mutation profiles

    Get PDF
    INTRODUCTION: Triple-negative breast cancers (TNBCs) are characterised by lack of expression of hormone receptors and epidermal growth factor receptor 2 (HER-2). As they frequently express epidermal growth factor receptors (EGFRs), anti-EGFR therapies are currently assessed for this breast cancer subtype as an alternative to treatments that target HER-2 or hormone receptors. Recently, EGFR-activating mutations have been reported in TNBC specimens in an East Asian population. Because variations in the frequency of EGFR-activating mutations in East Asians and other patients with lung cancer have been described, we evaluated the EGFR mutational profile in tumour samples from European patients with TNBC. METHODS: We selected from a DNA tumour bank 229 DNA samples isolated from frozen, histologically proven and macrodissected invasive TNBC specimens from European patients. PCR and high-resolution melting (HRM) analyses were used to detect mutations in exons 19 and 21 of EGFR. The results were then confirmed by bidirectional sequencing of all samples. RESULTS: HRM analysis allowed the detection of three EGFR exon 21 mutations, but no exon 19 mutations. There was 100% concordance between the HRM and sequencing results. The three patients with EGFR exon 21 abnormal HRM profiles harboured the rare R836R SNP, but no EGFR-activating mutation was identified. CONCLUSIONS: This study highlights variations in the prevalence of EGFR mutations in TNBC. These variations have crucial implications for the design of clinical trials involving anti-EGFR treatments in TNBC and for identifying the potential target population

    Gemcitabine with a specific conformal 3D 5FU radiochemotherapy technique is safe and effective in the definitive management of locally advanced pancreatic cancer

    Get PDF
    The aim of this phase II study was to assess the feasibility and efficacy of a specific three-dimensional conformal radiotherapy technique with concurrent continuous infusion of 5-fluorouracil (CI 5FU) sandwiched between gemcitabine chemotherapy in patients with locally advanced pancreatic cancer. Patients with inoperable cancer in the pancreatic head or body without metastases were given gemcitabine at 1000 mg m−2 weekly for 3 weeks followed by a 1-week rest and a 6-week period of radiotherapy and concurrent CI 5FU (200 mg m−2 day−1). The defined target volume was treated to 54 Gy in 30 daily fractions of 1.8 Gy. After 4 weeks' rest, gemcitabine treatment was re-initiated for three cycles (days 1, 8, 15, q28). Forty-one patients were enrolled. At the end of radiotherapy, one patient (2.4%) had a complete response and four patients (9.6%) had a partial response; at the end of treatment, three patients (7.3%) had a complete response and two patients (4.9%) had a partial response. Median survival time was 11.7 months, median time to progression was 7.1 months, and median time to failure of local control was 11.9 months. The 1- and 2-year survival rates were 46.3 and 9.8%, respectively. Treatment-related grade 3 and 4 toxicities were reported by 16 (39.0%) and four (9.8%) patients, respectively. Sixteen out of 41 patients did not complete the planned treatment and nine due to disease progression. This approach to treatment of locally advanced pancreatic cancer is safe and promising, with good local control for a substantial proportion of patients, and merits testing in a randomised trial

    Detecting intratumoral heterogeneity of EGFR activity by liposome-based in vivo transfection of a fluorescent biosensor

    Get PDF
    Despite decades of research in the epidermal growth factor receptor (EGFR) signalling field, and many targeted anti-cancer drugs that have been tested clinically, the success rate for these agents in the clinic is low, particularly in terms of the improvement of overall survival. Intratumoral heterogeneity is proposed as a major mechanism underlying treatment failure of these molecule-targeted agents. Here we highlight the application of fluorescence lifetime microscopy (FLIM)-based biosensing to demonstrate intratumoral heterogeneity of EGFR activity. For sensing EGFR activity in cells, we used a genetically encoded CrkII-based biosensor which undergoes conformational changes upon tyrosine-221 phosphorylation by EGFR. We transfected this biosensor into EGFR-positive tumour cells using targeted lipopolyplexes bearing EGFR-binding peptides at their surfaces. In a murine model of basal-like breast cancer, we demonstrated a significant degree of intratumoral heterogeneity in EGFR activity, as well as the pharmacodynamic effect of a radionuclide-labeled EGFR inhibitor in situ. Furthermore, a significant correlation between high EGFR activity in tumour cells and macrophage-tumour cell proximity was found to in part account for the intratumoral heterogeneity in EGFR activity observed. The same effect of macrophage infiltrate on EGFR activation was also seen in a colorectal cancer xenograft. In contrast, a non-small cell lung cancer xenograft expressing a constitutively active EGFR conformational mutant exhibited macrophage proximity-independent EGFR activity. Our study validates the use of this methodology to monitor therapeutic response in terms of EGFR activity. In addition, we found iNOS gene induction in macrophages that are cultured in tumour cell-conditioned media as well as an iNOS activity-dependent increase in EGFR activity in tumour cells. These findings point towards an immune microenvironment-mediated regulation that gives rise to the observed intratumoral heterogeneity of EGFR signalling activity in tumour cells in vivo

    Antiangiogenic therapy for breast cancer

    Get PDF
    Angiogenesis is an important component of cancer growth, invasion and metastasis. Therefore, inhibition of angiogenesis is an attractive strategy for treatment of cancer. We describe existing clinical trials of antiangiogenic agents and the challenges facing the clinical development and optimal use of these agents for the treatment of breast cancer. Currently, the most promising approach has been the use of bevacizumab, a humanized monoclonal antibody directed against the most potent pro-angiogenic factor, vascular endothelial growth factor (VEGF). Small molecular inhibitors of VEGF tyrosine kinase activity, such as sorafenib, appear promising. While, the role of sunitinib and inhibitors of mammalian target of rapamycin (mTOR) in breast cancer has to be defined. Several unanswered questions remain, such as choice of drug(s), optimal duration of therapy and patient selection criteria

    Recent advances in systemic therapy: Advances in systemic therapy for HER2-positive metastatic breast cancer

    Get PDF
    Human epidermal growth factor receptor (HER)2 over-expression is associated with a shortened disease-free interval and poor survival. Although the addition of trastuzumab to chemotherapy in the first-line setting has improved response rates, progression-free survival, and overall survival, response rates declined when trastuzumab was used beyond the first-line setting because of multiple mechanisms of resistance. Studies have demonstrated the clinical utility of continuing trastuzumab beyond progression, and further trials to explore this concept are ongoing. New tyrosine kinase inhibitors, monoclonal antibodies, PTEN (phosphatase and tensin homolog) pathway regulators, HER2 antibody-drug conjugates, and inhibitors of heat shock protein-90 are being evaluated to determine whether they may have a role to play in treating trastuzumab-resistant metastatic breast cancer
    corecore