26 research outputs found

    The physics of spreading processes in multilayer networks

    Get PDF
    The study of networks plays a crucial role in investigating the structure, dynamics, and function of a wide variety of complex systems in myriad disciplines. Despite the success of traditional network analysis, standard networks provide a limited representation of complex systems, which often include different types of relationships (i.e., "multiplexity") among their constituent components and/or multiple interacting subsystems. Such structural complexity has a significant effect on both dynamics and function. Throwing away or aggregating available structural information can generate misleading results and be a major obstacle towards attempts to understand complex systems. The recent "multilayer" approach for modeling networked systems explicitly allows the incorporation of multiplexity and other features of realistic systems. On one hand, it allows one to couple different structural relationships by encoding them in a convenient mathematical object. On the other hand, it also allows one to couple different dynamical processes on top of such interconnected structures. The resulting framework plays a crucial role in helping achieve a thorough, accurate understanding of complex systems. The study of multilayer networks has also revealed new physical phenomena that remain hidden when using ordinary graphs, the traditional network representation. Here we survey progress towards attaining a deeper understanding of spreading processes on multilayer networks, and we highlight some of the physical phenomena related to spreading processes that emerge from multilayer structure.Comment: 25 pages, 4 figure

    Mean Field Analysis of Personalized PageRank with Implications for Local Graph Clustering

    Get PDF
    International audienceWe analyse a mean-field model of Personalized PageRank on the Erdos-Renyi random graph containing a denser planted Erdos-Renyi subgraph. We investigate the regimes where the values of Personalized PageRank concentrate around the mean-field value. We also study the optimization of the damping factor, the only parameter in Personalized PageRank. Our theoretical results help to understand the applicability of Personalized PageRank and its limitations for local graph clustering
    corecore