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Mean Field Analysis of Personalized PageRank

with Implications for Local Graph Clustering

Konstantin Avrachenkov∗ Arun Kadavankandy† Nelly Litvak‡

Abstract

We analyse a mean-field model of Personalized PageRank on the Erdős-Rényi random
graph containing a denser planted Erdős-Rényi subgraph. We investigate the regimes where
the values of Personalized PageRank concentrate around the mean-field value. We also study
the optimization of the damping factor, the only parameter in Personalized PageRank. Our
theoretical results help to understand the applicability of Personalized PageRank and its
limitations for local graph clustering.

Keywords: Personalized PageRank; Mean Field; Concentration; Local Graph Clustering

1 Introduction

Personalized PageRank (PPR) can be described as a random walk on a weighted graph. With
probability α the random walk chooses one of the neighbour nodes, with probabilities propor-
tional to the edge weights, and with the complementary probability 1 − α the random walk
restarts from a set of seed nodes [20]. The analytical study of Personalized PageRank is chal-
lenging because of its non-local nature. Interestingly enough, it is easier to analyse Personalized
PageRank on directed graphs. In [6], the expected values of the standard PageRank [29] with
uniform restart and Personalized PageRank have been analyzed for directed preferential at-
tachment graphs. In [32] a stochastic recursive equation has been derived for the Personalized
PageRank on directed configuration model. This equation has been thoroughly analyzed in
[11, 22] and in the works mentioned therein.

On the other hand, the analysis of Personalized PageRank on undirected random graph
models is more difficult because a simple random walk on an undirected graph can pass through
an edge in both directions, thus creating many short cycles and loops. To the best of our
knowledge, [5] is the only work studying Personalized PageRank on undirected Erdős-Rényi (ER)
random graphs and stochastic block models. For the analysis of [5] to hold, the personalization
vector or the restart distribution has to be sufficiently delocalized. In [13] a mean-field model
for the standard PageRank has been proposed without a formal justification. In the recent work
[26] a mean-field model has been proposed for a modification of Personalized PageRank where
the contributions from all paths are same. The authors of [26] have carried out their analysis in
dense stochastic block models when the edge probabilities are fixed, i.e., they do not scale with
the size of the graph.

In the present work we analyze Personalized PageRank with a localized restart distribution.
As a graph model, we consider an ER random graph with a smaller denser ER graph planted
within. We establish conditions for concentration and non-concentration of PPR under different
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scaling laws of the edge probabilities. In particular, we show that when the graph is not too
sparse there is a concentration to the mean field model of PPR when the size of subgraph scales
linearly and the number of seeds scales sufficiently fast with the graph size. In other words,
we establish sufficient conditions for the convergence of PPR to its mean-field form in medium
dense graphs. In addition, we show that these conditions are also necessary in a class of sparse
graphs with tree-like local structure; i.e., if the number of seed nodes is too small, PPR does
not concentrate in a class of sparse graphs. We also show that when there is concentration, the
values of PPR can be well approximated by a simple mean-field model and this model can be
used for instance for the optimal choice of the damping factor.

An ER graph with a planted denser ER subgraph is the simplest model of a random graph
with heterogeneity. It is also a good benchmark model for testing various local graph clustering
algorithms. Local graph clustering algorithms are gaining importance since often in practice
one would like to recover one particular cluster of a graph using as a guide a few representative
seed nodes. One of the first efficient local clustering algorithms is the Nibble algorithm [30,
31] with quasi-linear complexity. The Nibble algorithm is truncation based approximation of
a few steps of a lazy random walk. In [2, 3] a modification of the Nibble algorithm using
Approximate Personalized PageRank (APPR) has been proposed and evaluated. APPR has
lighter computational complexity than the Nibble algorithm. In [15] it has been shown that
APPR can be obtained as a solution of an optimization problem with l1-regularization, which
ensures sparsity in APPR elements. Both Nibble and APPR try to keep the probability mass
localized on few important elements. Recently, in [4] a further improvement to the Nibble
algorithm has been proposed based on the technique of the evolving sets.

Our results imply that one needs a significant number of seed nodes to obtain a high qual-
ity local cluster. If there are only a few seed nodes, both PPR and APPR suffer from non-
concentration. Specifically, the main reason for the non-concentration of PPR and APPR is the
significant leakage of probability mass via the seed nodes’ neighbours which are outside of the
target community.

The methods in [30, 31, 2, 3, 4] aim to find a local cut with target conductance. However,
in [10] and [34] significant limitations of the random walks and PPR based local clustering
methods are presented in terms of graph conductance and related quantities. As a by-product
of our analysis, in Subsection 6.3 we show that the natural cluster in our random graph model
also does not really correspond to the problem of conductance minimization. This observation
can be viewed as complementary to the results in [10] and [34].

We would like to note that in [18] semidefinite relaxation is used to recover a hidden subgraph
without seed nodes and in [24] the belief propagation based algorithm is used to recover a
subgraph with seed nodes. These two methods appear to be superior to Personalized PageRank
based methods on the considered random graph models but require graph parameters as an
input. It is interesting to observe that in the semi-supervised clustering [1, 33] the detectability
transition disappears when any linear fraction of seed nodes is introduced.

This paper is organized as follows. In the following section we formally define the random
graph model and describe the mean field approximation of Personalized PageRank. In Section 3
we show that there is a concentration in the mean field model of PPR when the size of subgraph
and the number of seeds scale linearly with the graph size. However, as demonstrated in Sec-
tion 4, if the number of seed nodes is too small, there is no concentration. Then, in Section 5
using the mean field model we provide a recommendation for setting the restart probability.
Section 6 concludes the technical part of the paper with numerical illustrations and discussions
about possible limitations of the PPR and APPR based local graph clustering methods. Finally,
in Section 7 we recall our main results and outline promising avenues for further research.
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2 Graph model and notations

In this section we introduce the model and notations. The notations are summarised in Table 3
at the end of the paper.

We consider an ER random graph G(n, p) with a planted ER subgraph G(m, q). We are
interested in the case when the planted ER subgraph is denser than the background ER graph,
i.e., when q > p. Without loss of generality, we assume that the indices of the subgraph nodes
coincide with the first m indices of the background graph G(n, p). Denote this set of vertices
corresponding to the planted subgraph by C. At the moment we do not specify any scaling for
m, p and q and shall discuss various scalings whenever it is needed. We denote by A = {aij}
the adjacency matrix of the resulting graph, i.e.,

aij =

{
1, if i is a neighbour of j,
0, otherwise.

Denote by 1n the column vector of ones of dimension n and by Jm,n the matrix of ones of
dimensions m-by-n. Also denote by 0n the column vector of zeros of dimension n. Let d = A1n
be the vector of nodes’ degrees and D = diag{d} is the diagonal matrix of nodes’ degrees.
Then, P = D−1A is the transition probability matrix of the standard random walk when the
walker chooses the next node to visit uniformly among the neighbours of the current node. Let
k nodes of the planted subgraph be disclosed to us. Of course, k ≤ m. Again without the
loss of generality, we can assume that these k seed nodes correspond to the first k nodes of the
background graph. Denote the set of seed nodes by S. Then the personalization vector or the
restart distribution ν is given by

ν =

[
1

k
1Tk 0Tn−k

]
.

Personalized PageRank π can be expressed as follows:

π = (1− α)ν[I − αP ]−1. (1)

Now let us define the mean field model of Personalized PageRank. It is based on the expected
adjacency matrix:

Ā =

[
qJm,m pJm,n−m
pJn−m,m pJn−m,n−m

]
,

and the associated mean field transition probability matrix P̄ = D̄−1Ā. The mean field Person-
alized PageRank is given by

π̄ = (1− α)ν[I − αP̄ ]−1. (2)

Note that due to symmetry, the mean field Personalized PageRank has the following structure

π̄ =
[
π̄01

T
k π̄11

T
m−k π̄21

T
n−m

]
,

where π̄i, i = 0, 1, 2, are determined by the system of linear equations:

π̄0 − π̄0
αkq

mq + (n−m)p
− π̄1

α(m− k)q

mq + (n−m)p
− π̄2

α(n−m)

n
=

1− α
k

, (3)

−π̄0
αkq

mq + (n−m)p
+ π̄1 − π̄1

α(m− k)q

mq + (n−m)p
− π̄2

α(n−m)

n
= 0, (4)

−π̄0
αkp

mq + (n−m)p
− π̄1

α(m− k)p

mq + (n−m)p
+ π̄2 − π̄2

α(n−m)

n
= 0. (5)
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These equations can easily be solved in explicit form. For instance, subtracting equation (4)
from equation (3) we obtain

π̄0 =
1− α
k

+ π̄1. (6)

Multiplying equation (4) by p and equation (5) by q, respectively, and then subtracting one from
another, we get

π̄1 = π̄2

(
q

p
− α(n−m)

n

q

p
+
α(n−m)

n

)
. (7)

Then, substituting subsequently (6) and (7) into (5) yields

π̄2 =
(1− α)αp

(mq + (n−m)p)
(

1− α(n−m)
n

)
− αm

(
q − α(n−m)

n (q − p)
) . (8)

Using (6) and (7), one easily retrieves π̄1 and π̄2. Namely, we have

π̄1 =
(1− α)α

(
q − α(n−m)

n (q − p)
)

(mq + (n−m)p)
(

1− α(n−m)
n

)
− αm

(
q − α(n−m)

n (q − p)
) , (9)

and

π̄0 =
1− α
k

+
(1− α)α

(
q − α(n−m)

n (q − p)
)

(mq + (n−m)p)
(

1− α(n−m)
n

)
− αm

(
q − α(n−m)

n (q − p)
) . (10)

We would like to note that there is a simple bound on the expectated value of PPR. Clearly, we
have

∑
i∈C\S πi ≤ 1. By taking expectation of both sides and using symmetry, we obtain

E(πi) ≤
1

m− k
, (11)

for i ∈ C\S. Similarly, we have

E(πi) ≤
1

n−m
, (12)

for i ∈ {1, 2, . . . , n}\C.

3 Conditions for concentration of the PPR

Let us study the conditions when Personalized PageRank concentrates around its mean-field
model. In order to investigate different regimes, we shall emphasize the dependence of the key
parameters on the size of the graph n, that is k := k(n), m := m(n), p := p(n) and q := q(n).
The following result states the L2 convergence of the relative error of the mean field Personalized
PageRank.

Theorem 1 Assume that nq(n) = ω(log(n)) and p(n)/q(n) = Θ(1). Then, the relative L2

distance between π and π̄ converges in probability to zero. More precisely, there exists C > 0
such that

||π − π̄||2
||π̄||2

≤ αC

(1− α)
√

np(n)
log(n) − αC

, a.a.s. (13)
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Proof: It follows from the sensitivity analysis of the system of linear equations [16], (A +
∆A)(x+ ∆x) = b, that the following inequality takes place

||∆x||2
||x||2

≤ ||A−1||2||∆A||2
1− ||A−1||2||∆A||2

. (14)

In our case, this general inequality becomes

||π − π̄||2
||π̄||2

≤ ||[I − αP̄ ]−1||2|| − α[P − P̄ ]||2
1− ||[I − αP̄ ]−1||2|| − α[P − P̄ ]||2

. (15)

Since one is the maximal modulus eigenvalue of P̄ , we have

||[I − αP̄ ]−1||2 =
1

1− α
. (16)

From Lemma 1, which we provide below, it follows that there is C > 0 such that

||α[P − P̄ ]||2 ≤ αC

√
log(n)

np(n)
, a.a.s. (17)

The combination of (15), (16) and (17) yields the result. 2

We would like to note that the inequality (13) indicates very slow convergence. Indeed, if
we consider the standard moderately sparse regime with

p(n) =
logc(n)

n
, c > 1, (18)

the rate of convergence will be of the order 1/ log
c−1
2 (n).

We will now provide Lemma 1, which is crucial for the proof of Theorem 1.

Lemma 1 Assume that nq(n) = ω(log(n)), and p(n)/q(n) = Θ(1). Then for some C > 0,

||P − P̄ ||2 ≤ C

√
log(n)

np
, a.a.s.

Proof: We denote by Ā the expected adjacency matrix and by D̄ the diagonal matrix of expected
degrees. From Lemma 10 in [5] we have

‖A− Ā‖2 ≤ K
√

log(n)nq(n), a.a.s., (19)

where we used the fact that q(n) > p(n). Then, since p(n)/q(n) = Θ(1), we also have np(n) =
ω(log(n)). Therefore, from Lemma 8 of [5] for some C1 > 0 we have

‖D̄−1D − I‖2 ≤ C1

√
log(n)

np(n)
, a.a.s., (20)

since Ā is a rank two matrix with all entries in the upper-left sub-matrix of size |C| × |C| equal
to q(n) and all other entries being p(n). Now, from (19) we obtain

‖A‖2 ≤ ‖A− Ā‖2 + ‖Ā‖2 ≤ K
√

log(n)nq(n) + nq(n), a.a.s. (21)
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Using the above bounds, we get

‖D−1A− D̄−1Ā‖2 = ‖(D−1D̄ − I)D̄−1A+ D̄−1(A− Ā)‖2
= ‖D−1D̄ − I‖2‖D̄−1‖2‖A‖2 + ‖D̄−1‖2‖A− Ā‖2

≤ 1

np(n)

(
C1

√
log(n)

np(n)
(K
√

log(n)nq(n) + nq(n)) +K
√

log(n)nq(n)

)

≤ C

√
log(n)

np(n)

for some C > 0. 2

Now let U be a uniformly randomly sampled integer between 1 and n and

η(i) =


0, 1 ≤ i ≤ k,
1, k + 1 ≤ i ≤ m,
2, m+ 1 ≤ i ≤ n.

Then, using Theorem 1 we can establish that the difference between πU and π̄η(U) is vanishing
with high probability when k(n) is large enough. The result is formally stated in the next
theorem.

Theorem 2 Let conditions of Theorem 1 hold. Furthermore, let k = k(n) be such that k(n)p(n) =
ω(log(n)) and let U be the index of a randomly sampled node 1, 2, . . . , n. Then, for any ε > 0
the following result holds

lim
n→∞

P
(
|πU − π̄η(U)| ≥ εn−1

)
= 0. (22)

Proof: Denote by Bn the event that the inequality in (13) holds:

Bn =

 ||π − π̄||2||π̄||2
≤ αC

(1− α)
√

np(n)
log(n) − αC


for an appropriate value of C. The idea of the proof is to use this inequality to bound our
probability of interest on Bn and then use the fact that limn→∞ P (Bn) = 1.

To this end, we need to bound the probability in (22) using L2-norms. We do this by first
conditioning on the realization of G. We will denote by Pn the probability measure conditioned
on G. Then the randomness is only in the choice of U . By Markov’s inequality, we have

Pn
(
|πU − π̄η(U)| ≥ εn−1

)
≤
nEn(|πU − π̄η(U)|)

ε

=
n

ε

(
1

n

∑
i

|πi − π̄η(i)|

)

≤ n

ε

(
1

n

∑
i

|πi − π̄η(i)|2
)1/2

=

√
n

ε
||π − π̄||2.
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Next, by the full probability formula, we have

P
(
|πU − π̄η(U)| ≥ εn−1

)
= E

[
Pn
(
|πU − π̄η(U)| ≥ εn−1

)]
= E

[
Pn
(
|πU − π̄η(U)| ≥ εn−1

)
1{Bn}

]
+ E

[
Pn
(
|πU − π̄η(U)| ≥ εn−1

)
1{B̄n}

]
≤ E

[√
n

ε
||π − π̄||2 1{Bn}

]
+ P (B̄n)

≤ αC
√
n ||π̄||2

(1− α)
√

np(n)
log(n) − αC

P (Bn) + P (B̄n), (23)

where we used (13) for the last step. Since P (Bn) converges to one as n → ∞, the statement

of the theorem follows when αC
√
n||π̄||2

(1−α)
√

np(n)
log(n)

−αC
converges to zero. It remains to verify that this

is indeed the case when k(n)p(n)
log(n) → ∞. Now note that (23) together with the fact that π̄0 =

Θ((k(n))−1), π̄1 = Θ((m− k(n))−1), π̄2 = Θ((n−m)−1), and k = O(m), implies that

||π̄||2 =
(
k(n)π̄2

0 + (m− k(n))π̄2
1 + (n−m)π̄2

2

)1/2
= Θ

(
k(n)−1/2

)
,

which gives the result. 2

The practical implication of Theorem 2 is that the condition k(n)p(n)
log(n) →∞ is sufficient for π

to be well approximated by π̄. In other words, π is concentrated around π̄. Notice that the result
of Theorem 2 holds for a large range of regimes. Indeed, the requirement k(n)p(n) = ω(log(n))
means that the number of seed node neighbours of a node i /∈ C is of the order larger than
log(n). This condition is satisfied in a dense regime as well, when p(n) and q(n) are constants.
For example, the above analysis is also applicable in the setting of [26], but without the artificial
modification of PPR. In the next section we will focus on the regimes where the local tree
approximation of the graph is valid. This does not include a dense regime or any regime where
np(n), nq(n) are powers of n. In this class of regimes, we will obtain conditions, under which
concentration does not occur.

4 Non-concentration conditions for PPR

In this section we will, as before, assume that p(n)/q(n) = Θ(1) and consider the regime when
nq(n) is smaller than a power of n, more precisely, nq(n) = o(nε) for all ε > 0. Note this
includes our regime of interest (18). We will show that in this range of parameters the condition
k(n)q(n) → ∞ is necessary for concentration of π around π̄ to occur. Specifically, when this
condition is violated, then π does not concentrate at all, that is, the coefficient of variation of
πi, i = 1, 2, . . . , n, is non-vanishing.

Our argument relies on the local tree approximation of our random graph model constructed
as follows. For any node i in G, we will say that i is of type C if i ∈ C and of type C̄ otherwise.
Consider a rooted Galton-Watson tree T ti of depth t with root i. Assume that each node has
Poisson(mq(n)) number of offspring of type C and Poisson((n−m)p(n)) number of offspring of
type C̄, each type independent of each other. The following lemma from [17] states that T ti can
be coupled with high probability with the t-hop neighborhood of a random node, Gti.

Lemma 2 [17, Lemma 10] Assume that p(n)/q(n) = Θ(1) and nq(n) = o(nε) for all ε > 0.
Then for any node i = 1, 2, . . . , n and t := t(n) → ∞ such that (nq(n))t = no(1), there exists
a coupling such that (Gti, σ

t) = (T ti , τ t) with probability 1 − n−1+o(1), where Gti is the subgraph
induced by the set of nodes at distance t from i and σt is the vector of the types of the nodes of
the graph. Also, T ti is a Galton-Watson tree with Poisson offspring distribution and τ t is the
vector of types on T ti .
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We want to show that if k(n)q(n) = O(1), then, with positive probability, the difference
between πi and E(πi) is of the same order of magnitude as E(πi) itself. The prove consists of
two steps. First, in Lemma 3 we will show that πi is well approximated by a t-neighborhood.
Then, in Theorem 3, we will use this result together with Lemma 2 to demonstrate the non-
concentration.

Denote by πt the contribution of paths shorter than t:

πt = (1− α)ν
t−1∑
l=0

αlP l.

Now we can easily prove Lemma 3 below.

Lemma 3 Take t := t(n)→∞. Then for any i /∈ S,

E(|πi − πti |) = o(n−1). (24)

Proof: First, we split the PPR in (1) as follows:

π = πt + (1− α)ναtP t
∞∑
l=0

αlP l.

Now, proceeding exactly as in [11], for the second term we get

‖πi − πti‖1 = αt.

Assume that i ∈ C\S, and note that for the nodes outside C the argument is exactly the same.
Since all m nodes in C are symmetric, for any t = t(n)→∞ we immediately obtain

E(|πi − πti |) ≤
1

m
αt = o(n−1).

This gives (24). 2

Now using Lemma’s 2 and 3 we can prove the non-concentration result, stated in the next
theorem. We will prove the result in the regime when k(n) is at least a power of n (however,
such power can be arbitrarily small).

Theorem 3 (Non-concentration of PPR) Let G be rooted at node i /∈ S. If k(n)q(n) = O(1)
and there exists ξ > 0 such that k(n) ≥ nξ, then

Var(πi)

E2(πi)
= Ω(1). (25)

Proof: We will again prove the result for node i ∈ C\S. As in Lemma 3, the argument for i /∈ C
is exactly the same. First of all, note that

E(πi) ≤
1

m
= Θ(n−1)

8



because E(πi) ≤ 1
m = Θ(n−1). Next, taking into account only neighbors of i from S and using

Jensen’s inequality, we can write

E(πi) ≥
α

k(n)
E

∑
j∈S

1{ai,j = 1}
dj


=

α

k(n)
k(n)q(n)E

(
1

dj

∣∣∣∣ ai,j = 1

)
≥ αq(n)

E(dj |ai,j = 1)

=
αq(n)

((m− 1)q(n) + np(n) + 1)
= Θ(n−1),

where we recall that ai,j is the element of the adjacency matrix A. In the rest of the proof we
will evaluate Var(πi). For that, we will use the decomposition of PageRank from [7]. Consider
a simple random walk (Xl)l≥0 on G such that at each step the walk continues with probability
α and terminates with probability 1−α. Let T be the termination time, which has a geometric
distribution with parameter (1− α). Denote by P(j) the conditional probability given the event
{X0 = j}. Then, for any realization of the graph, from [7] we have:

πi =
(1− α)

|S|

(∑
s∈S

P(s)(Xl = i for some l ≤ T )

)
E(i)

[ ∞∑
l=0

1{Xl = i}

]
. (26)

= (I)× (II)× (III).

Here (I), (II) and (III) are random variables that depend on a realization of the random graph.
Note that (III) is the average number of visits to i, starting from i and before termination of
the random walk. It is easy to see that this number is not smaller than 1 (at least one visit at
the initial step) and not greater than (1− α2)−1 (there is a geometric number of returns, while
α2 is the maximal possible return probability). Thus, it is sufficient to consider the variance of
(II).

We will do this by using the local tree approximation. Choose t := t(n) as in Lemma 2.
Consider only t-neighborhood of i, denoted by Gti, and let π̃ti be such that the contribution of
(II) in (26) is restricted only by paths in Gti:

π̃ti =
(1− α)

|S|

(∑
s∈S

P(s)(Xl = i for some l ≤ T , X0, . . . , Xl−1 ∈ Gti)

)
E(i)

[ ∞∑
l=0

1{Xl = i}

]
(27)

= (I)× (II)′ × (III),

Note that
π̃ti ≤ πi, (28)

because πi includes all paths of length t plus some paths of lengths longer than t, which make
loops in Gti on the way to i, plus the paths that include a loop from i back to i. Thus, if we
write πi = π̃ti + δti with δti ≥ 0 then E(δt) = o(n−1) due to (28) and Lemma 3. It follows that

Var(πi) = Var(π̃ti) + Var(δt) + 2E(π̃tiδ
t)− 2E(πi)E(δt) (29)

≥ Var(π̃ti)− 2E(πi)o(n
−1) = Var(π̃ti) + o

(
[E(πi)]

2
)
. (30)

Therefore, it is sufficient to bound Var(π̃ti) from below by a term of the order at least [E(πi)]
2. To

this end, it follows from the same argument as after equation (26), we need to analyze Var((II)′).
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Conditioning on the last step before reaching i, we get:

(II)′ =
∑

j:j offspring of i

α

dj

∑
s∈S

P(s)(Xl = j for some l ≤ T − 1, j reached before i, X0, . . . , Xl−1 ∈ Gti).

(31)
Next, denote by Cn the event that the t-neighborhood of i coincides with the Galton-Watson
tree (T ti , τ t). Conditioned on Cn, the terms in the external summation in (II)′ are independent.
In particular, Var((II)′|Cn) is a sum of three independent contributions: from the neighbors of
i in S, C\S and C̄. We will lower bound Var((II)′|Cn) by considering only the contribution of
the neighbors of i that are seed nodes. We number such neighbors as i1, i2, . . . , iN0 . Then we
obtain

Var((II)′|Cn)

≥ Var

 ∑
j∈{i1,...,iN0

}

α

dj

∑
s∈S

P(s)(Xl = j for some l ≤ T − 1, j reached before i, X0, . . . , Xl−1 ∈ Gti)|Cn


:= Var

 ∑
j∈{i1,...,iN0

}

Zj |Cn


= E(N0|Cn)Var(Zj |Cn) + Var(N0|Cn)(EZj |Cn)2.

Motivated by the above expression, we will evaluate the moments of N0 given Cn. Recall that in
the original graph, N0 has Binomial(k(n), q(n)) distribution. Now, for r > 0 and some ε < ξ/r
we split E(N r

0 ) as follows:

E(N r
0 ) = E(N r

0 |Cn)P(Cn) + E(N r
0 1{N0 < nε}1{C̄n}) + E(N r

0 1{N0 > nε}1{C̄n}). (32)

By Lemma 2, the second term in (32) is bounded from above by nrεP(C̄n) = O(n−1+rε+o(1)) =
o(k(n)q(n)). The third term in (32) is bounded by kr(n)P(N0 > nε). Using the bound from
Theorem 2.21 in [21], we obtain that

kr(n)P(N0 > nε) ≤ kr(n)e
− (nε−k(n)q(n))2

2(2k(n)q(n)/3+nε/3)

= kr(n)O(e−n
ε/2) = o(k(n)q(n)).

It follows that

E(N0|Cn)P(Cn) = k(n)q(n)(1 + o(1)),

Var(N0|Cn) = k(n)q(n)(1− q(n))(1 + o(1)).

From this and q(n) = o(1), we conclude that for some 0 < γ < 1 we have

Var((II)′|Cn) ≥ γk(n)q(n)E(Z2
j |Cn). (33)

Note that for every j ∈ S we have the trivial lower bound

Zj ≥
α

dj
P(j)(Xl = j for some l ≤ T − 1, j reached before i, X0, . . . , Xl−1 ∈ Gti ) =

α

dj
.

10



Further, recall that given Cn, dj
d
= 1 + Poisson(mq(n) + (n−m)q(n)). It follows that

E(Z2
j |Cn) ≥ α2E

(
1

d2
j

)
≥ α2

(
1

[E(dj)]2

)
=

α2

(1 +mq(n) + (n−m)p(n))2

≥ α2

4n2q(n)2
, (34)

where in the second inequality we used Jensen’s inequality. From (33), (34) it follows that

Var((II)′|Cn) ≥ γα2k(n)q(n)

4n2q(n)2
.

Hence, since (III) ≥ 1, from (27), we get

Var(π̃ti |Cn) ≥ γα2(1− α)2

4k(n)q(n)n2
.

Finally, using that E(πi) = Θ(n−1) and limn→∞ P(Cn) = 1, we obtain

Var(π̃ti)

[E(πi)]2
≥ Var(π̃ti |Cn)P (Cn)

[E(πi)]2
= Ω

(
1

k(n)q(n)

)
, (35)

which, together with (29), gives the result. 2

Remark 1 It should be possible to relax the condition k(n) = ω(nξ) to k(n) = ω(1). For that,
we need either a stronger coupling than in Lemma 2 or another way to evaluate E(N0|Cn) instead
of (32).

Let us now discuss some implications of Theorem 3. Suppose, for example, that q(n) =
(1 + a)p(n) for some a > 0. The non-vanishing coefficient of variation means that πi has finite
spreading around its mean. Then, in practice, if a is small, we will not be able to distinguish
many nodes in C from the nodes outside of C, even in a very large network. We will provide an
illustration for this scenario in Figures 2, 3 in Section 6.

The necessary condition k(n)q(n)→∞ has the following very intuitive interpretation. Note
that k(n)q(n) is the average number of neighbors from S of a node in C. Recall that each seed
node (in S) receives a certain large probability mass. When node i has a finite average number
of neighbors from S, then their total contribution to πi is a finite random variable, so there
is no concentration. Moreover, when k(n)q(n) → ∞ then contributions of S to πi is a sum of
asymptotically infinite number of terms, so the concentration should occur.

In the proof we used the coupling of the graph with a tree. Note that recent work [14] allows
one to pass the distribution of PageRank to the limit when the graph converges (possibly to a
tree) in the ‘local weak convergence’ sense. However, such convergence is defined only for sparse
graphs, i.e., with asymptotically finite degrees, and does not apply to our ‘medium dense’ case
(18). Also, Theorems 1 and 2 are applicable to the dense regime when p and q do not depend
on the size of the graph.

11



5 Optimization with respect to the damping factor

In clustering applications, the performance of personalized PageRank is influenced by the choice
of the parameter α. In [2], the authors choose α as a function of the conductance of the desired
smallest cut. Typically, the conditions of [2] lead to the values of α very close to one. In
community detection applications, the probability of an error is a function of the difference
between PageRank scores within and outside the community. In Theorem 2, we have identified
a regime, where PPR π is concentrated around its mean-field proxy π̄. In such regime we can
use the expressions for π̄1 and π̄2 from Section 2 to find an optimal parameter α that maximizes
the difference between PageRank inside and outside community C. Thus, the optimal α can be
found as the solution to the following optimization problem:

αopt = arg max
α

(π̄1(α)− π̄2(α)).

Let us denote ρ = q
p and β = n−m

n . Then by (7) we have

π̄1 − π̄2 = (ρ− 1)(1− αβ)π̄2

=
α(1− α)(ρ− 1)(1− αβ)

m
(
α2β(ρ− 1)− α(ρβ + ρ+ β2

1−β ) + ρ+ β
1−β

) .
The optimum α is such that d

dα(π̄1 − π̄2)
∣∣
α=αopt

= 0. Thus, we find the optimum α as the

solution of the following equation:

α4β2(ρ− 1)− 2β

(
ρβ + ρ+

β2

1− β

)
α3

+ α2

(
3β(ρ+

β

1− β
) + (1 + β)(ρβ + ρ+

β2

1− β
)− β(ρ− 1)

)
− 2α(1 + β)

(
ρ+

β

1− β

)
+ ρ+

β

1− β
= 0.

With straightforward algebra, we can simplify the above equation as follows:

(α− 1)2

(
α2β2(ρ− 1)− 2αβ

(
ρ+

β

1− β

)
+ ρ+

β

1− β

)
= 0.

Since α < 1, the optimum is the solution of the following quadratic equation

α2β2(ρ− 1)− 2αβ

(
ρ+

β

1− β

)
+ ρ+

β

1− β
= 0.

The solutions to the above equation are

α∗i =
ρ− β(ρ− 1) + (2i− 1)

√
ρ− β(ρ− 1)

β(1− β)(ρ− 1)
,

for i = 0, 1. The solution corresponding to i = 1 can be shown to be greater than 1 for any
ρ > 1, β < 1 and hence the only feasible solution is given by

αopt = min

(
1,
ρ− β(ρ− 1)−

√
ρ− β(ρ− 1)

β(1− β)(ρ− 1)

)
. (36)
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From the above equation, we can glean the following insight. Notice that if x := ρ−β(ρ−1) =
(1− β)ρ+ β, then after some elementary algebraic manipulations we have

αopt =

√
x

(1 +
√
x)(ρ− x)

=

√
x

β(1 +
√
x)
.

Thus, for a fixed ρ or β, αopt is an increasing function of x, while x itself is an increasing (or
decreasing) function of ρ (or β). In other words, the more distinguishable the community is
(larger ρ or smaller β), the larger is the optimum α. This conforms to the intuition that the RW
starting from the seed nodes should explore the graph more before termination when we have a
denser or larger community.

6 Numerical examples and implications for local graph
clustering

The theoretical results of the two preceding sections have important implications for PPR based
local graph clustering. Our main theoretical result is that the parameter k should scale linearly
and the parameter m sufficiently fast with the size of the graph n in order to ensure the con-
centration of PPR. In practice, this means that the number of seed nodes should be significant
to guarantee high quality clustering results and the target community should not be too small.

As an aside, one could pose the following natural question: Can the sparsity-enforcing nature
of the Approximate PPR (APPR) algorithm help to avoid the leakage of probability mass to
the nodes outside of the target community? Unfortunately, as we will demonstrate below in
Subsection 6.2, APPR suffers from the same non-concentration phenomenon as the original
PPR.

For the purpose of illustration let us consider a specific numerical example. We take n =
10000, m = 2000, and the edge probabilities as follows:

p(n) =
5 log2(n)

n
, q(n) =

10 log2(n)

n
, (37)

We first consider the case α = 0.8. If we set k = 200, we observe a reasonably good concentration
(see Figure 1) even though the values of p(n) and q(n) set by (37) imply very slow convergence
with the rate 1/

√
log(n), according to (13). We can also calculate the percentage of nodes

wrongly assigned to the community C according to the rank of PPR, which we denote by E
defined below

E =
|C
⋂
Ĉ|

|C|
,

where C is the target community, C is its compliment and Ĉ is an algorithm output. For the
above chosen parameters we obtain E = 3.6%.

In the next experiment we decrease the number of seed nodes to k = 20. Then the error
increases by an order of magnitude and becomes E = 44.2%, and we can observe the effect of
non-concentration in Figure 2. Curiously enough, if we decrease the number of seeds further
to k = 2, the error actually improves a bit to E = 34.5% but still remains very high. We
can explain the slight decrease in the error by the fact that most misclassified nodes are the
neighbours of seed nodes. Notice that this is in accordance with the proof of Theorem 3 where
the neighbors that are seed nodes played a crucial role. Indeed, the spikes in Figure 3 correspond
to the neighbours of the seed nodes. Thus, if we decrease the number of seed nodes, we also
subdue the main source of errors. Of course, there is a fine trade off and one cannot eliminate
completely the strong effect from non-concentration.
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Figure 1: PPR (blue) and its mean-field model (red) for k=200. On the x-axis are the indices
of the nodes. Nodes with indices 1, 2, . . . , 2000 belong to C.
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Figure 2: PPR (blue) and its mean-field model (red) for k=20. On the x-axis are the indices of
the nodes. Nodes with indices 1, 2, . . . , 2000 belong to C.

6.1 Optimum value of α

In this section we investigate numerically the dependence of the optimum α derived from the
mean-field version of PPR on the graph parameters. In Figure 4 we plot the difference π̄1(α)−
π̄2(α) as a function of α for n = 10000, m = 3000, and p and q as in (37). We see that the
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Figure 3: PPR (blue) and its mean-field model (red) for k=2. On the x-axis are the indices of
the nodes. Nodes with indices 1, 2, . . . , 2000 belong to C.

curves for k = 2 and k = 200 coincide. This is the case because π̄1 and π̄2 in fact do not depend
on k. It is interesting to observe that for reasonably large communities the optimum value of α
is quite close to the default value 0.85 set by Google. Now, if we decrease the community size
from 3000 to 300, the optimum value of α decreases towards 0.5 (see Figure 5). The decrease
is expected, since to identify a smaller community, PPR needs shorter walks. It might not be a
coincidence that the optimum value of α decreased towards 0.5, which was a value recommended
in [8, 9] by some other considerations.

6.2 Non-concentration of Approximate Personalized PageRank

The Approximate Personalized PageRank (APPR) algorithm in [2] is used to find a set of nodes
S with a given target conductance φ. In order to have a set with conductance at most φ, we

need to choose the parameters of the algorithm α, ε [2] such that 1 − α = φ2

225 log(100
√
|E|)

and

ε = 2−b

48B , where B = dlog2(|E|)e and b ∈ [1, B] (Note: In our numerical experiments we take
b = 13; larger values of b decrease ε and thus increase the time to convergence of APPR, without
significant gain in performance.)

For the graph parameter values considered in this section the ‘mean form’ conductance is
φ(C) = 0.66, see equation (39) below. The conditions of [2] give α = 0.999. Using these values
we run a clustering algorithm based on the exact PPR where nodes are ranked according to
their pagerank scores and the output community is the set of first m nodes. We also run the
APPR algorithm [2] with ε = 10−7. The algorithm is quoted here for the sake of completeness
in Algorithm 1. Note that the final step of the clustering algorithm based on the approximate
PageRank is to perform a “sweep operation” on the nodes ordered in decreasing order of a
ranking function on the nodes. The ranking function proposed in [2] is the values of APPR
divided by the node degrees. In our simulations we also investigate the performance of the
algorithm where the ranking function is the approximate PageRank without this degree scaling.
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Figure 4: Optimum value of the restart probability for m = 3000.
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Figure 5: Optimum value of the restart probability for m = 300.

The two cases are denoted as ‘with degree scaling’ and ‘without degree scaling’ respectively.
Finally, if the output of the sweep has more nodes than m, we take the first m nodes (i.e., nodes
with largest values of the ranking function).

We summarize the values of the error E in Tables 1 and 2. In Table 1, we choose α = 0.85
(initially used by Google webranking [27]). In Table 2, we use the values computed based on the
formulae in [2], but with α chosen to be 0.99 (the algorithm does not converge for α = 0.999).
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α = 0.85, ε = 10−8 without degree scaling with degree scaling

PPR 0.35 -

APPR 0.49 0.724545

Table 1: The error E of Approximate and Exact PPRs for α = 0.85

α = 0.99, ε = 10−7 without degree scaling with degree scaling

PPR 0.044 -

APPR 0.069 0.72

Table 2: The error E of Approximate and Exact PPRs for α = 0.99

We make the following observations from our simulations. It is clear that APPR is also
impacted by the same non-concentration phenomenon as the exact PPR. This is demonstrated
in Figure 6 where we plot a realisation of APPR for k = 2 and α = 0.85. The spikes again
correspond to the neighbours of the seed nodes.

When α = 0.99 the PPR solution is very close to the stationary distribution of a standard
RW which is proportional to degrees. Hence we get almost perfect reconstruction in this case,
since the expected degrees of the nodes can be used to cluster the graph nodes efficiently.

This observation stems from the fact that we chose m that grows linearly with n and hence
the degrees of the nodes inside the community are sufficiently different from the degrees of
the nodes outside it. A more interesting scenario is a situation where m = o(n). In this case,
asymptotically the degrees of nodes outside the community and inside the community converge
to the same value, making it impossible to detect the community only using the node degrees.

Let us take m = 200, n = 10000, p = 5 log2(n)
n and q = 10 log2(n)

n . By simply ranking by degrees
and choosing the first m nodes, we get error E = 0.935. Notice that if we do random guessing
we get an error value E = 1 − m

n = 0.98. Hence ranking based on degrees is almost as bad as
random guessing! But using PPR we can get an error of 0.77 with α = 0.7 just with 20 seed
nodes.

Algorithm 1 Clustering Algorithm using APPR

1: Compute approximate pagerank vector pr(v, α, ε) as in [2].
2: Do sweep operation:
3: Sort vertices in decreasing order of pr(v,α,ε)i

di
for 1 ≤ i ≤ Np, where Np is the maximum size

of the subgraph.
4: For the recursive node-set Si = {1, 2, . . . i} at step i, let φi be the conductance. Then
Sout = arg mini≤Np φi.

5: Return Sout if φ(Sout) < φ.

6.3 Minimum conductance set

Notice that the conductance of community C, denoted by cond(C) is given by

cond(C) =
|δE|

min(vol(C), vol(C))

=

∑m
i=1

∑n
j=m+1Aij

min
(∑m

i=1 di,
∑n

i=m+1 di
) . (38)
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Figure 6: APPR for k = 2 and α = 0.85.

By virtue of Bernstein’s inequality applied to the numerator and the degree concentration lemma
applied to the denominator, we can see that the conductance of the community C converges to
and can be well-approximated for a finite n by φ given below.

φ(C) =
κ(1− κ)p

min((κ)2q, (1− κ)2p) + κ(1− κ)p
, (39)

where κ := m
n .

In [10] and [34] it has been observed that the graph conductance has significant limitations
as a criterion for graph clustering. We show that in our random graph model the minimization
of the graph conductance does not lead to the determination of the natural cluster.

Now, suppose we are looking for a set A with minimal conductance, so we want to assign
fraction γ of nodes to A. Assume first that an edge between any two nodes is present with equal
probability p. Then we have a very simple expression for the ‘mean’ conductance of A:

φ(A) =
γ(1− γ)p

min(γ2p, (1− γ)2p) + γ(1− γ)p
. (40)

It is easy to see that φ(A) is minimized when γ = 1/2, so that in the denominator we get
γ2 = (1 − γ)2. Now, assume that q = (1 + c)p, and fraction κ of nodes are in a hidden
community C. For simplicity of understanding, consider the case when γ > κ, and C ⊆ S. Then
in (40) only one term in the denominator will change, namely, it will increase by κ2c:

φ(S) =
γ(1− γ)p

min((γ2p+ κ2 c), (1− γ)2p) + γ(1− γ)p
.

Clearly, the equality γ2p + κ2 c = (1 − γ)2 will now hold for γ < 1/2, so the set of minimal
conductance will reduce. However, note that the value of γ, which minimizes conductance, is a
continuous function of c and κ. For example, when c and/or κ are small, the conductance will
be minimized on a set S that contains almost 1/2 of the nodes. This explains why the sets with
minimal conductance, which we find in our experiments according to Algorithm 1, are typically
much larger than C.
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Specifically, the conductance of the community returned by exact PPR using only the first m
largest elements is 0.6748. The output conductance of the set returned by the sweep algorithm
for APPR is 0.0024. However this set is much larger than the target community (its size is 4686).
But when this set is truncated to 2000, its conductance becomes 0.6809.

We would like to mention that if one considers the conductance values of communities of size
m (like in [23, 28]), then such ‘restricted’ conductance is minimized on the natural community
C, given the community C is neither too large nor too dense.

Thus, in the context of PPR based local graph clustering, the size of the community (if
available) can provide a better guidance than the conductance.

7 Conclusions and future research

We analysed a mean-field model of Personalized PageRank on the Erdős-Rényi random graph
containing a denser planted Erdős-Rényi subgraph. We also studied the optimization of the
damping factor, the only parameter in Personalized PageRank. Our main conclusion is that
PPR concentrates in the regime when the community size scales linearly and the number of
seed nodes scales sufficiently fast with the size of the graph. We also identify the regime where
concentration does not occur. We have also demonstrated that the truncation of APPR does
not mitigate the non-concentration of PPR. The main reason for non-concentration of PPR and
APPR is the significant leakage of probability mass via the neighbours of the seed nodes. This
raises concerns about obtaining high quality local clustering when the number of seed nodes
is small. Of course, we have studied a very particular model of a network with community
structure. At the same time this model appears to be a very natural benchmark for local
graph clustering algorithms. Our concerns complement the limitations of PPR based clustering
discussed in [10] and [34]. As in [10, 34, 23], we also note that the plain conductance might not
be the best criterion for local graph clustering.

From [17, 18] we know that recovering a hidden community is easy and can be done by light
complexity algorithms if the size of the community scales linearly with the size of the graph
and this is possible even without using the seed nodes. As our analysis indicates, there are
concerns about the applicability of PPR based method in the regime with sublinear scaling of
the number of seed nodes. In contrast, belief propagation based algorithms can achieve good
detection performance even with a few number of seeds; however, they require good quality
seeds and, unlike PPR, they require the knowledge of the graph parameters [24]. Possibly,
a combination of these ideas is needed to overcome the limitations of both PPR and belief
propagation algorithms.

One more interesting research direction is the extension of the present results to the setting of
multiplex networks [12, 19] when several networks represent one actual underlying phenomenon.
We expect that using several instances of the same network will significantly improve concen-
tration, and hence the performance, of the PPR based clustering methods.
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Table 3: Notation

Symbol Meaning

V set of nodes
C planted subgraph (community)
S set of seed nodes
n size of the graph
m size of the planted subgraph
k number of seed nodes
p probability of edge in the graph
q probability of edge in the subgraph
1n vector of ones of dimension n
Jm,n matrix of ones of dimension m-by-n
0n vector of zeros of dimension n
A adjacency matrix
d = A1n vector of nodes’ degrees
D = diag{d} diagonal matrix of nodes’ degrees
P = D−1A transition probability matrix
π Personalized PageRank
α damping factor
Ā expected adjacency matrix
d̄ = Ā1n vector of expected nodes’ degrees
D̄ = diag{d̄} diagonal matrix of expected nodes’ degrees
P̄ = D̄−1Ā mean-field transition probability matrix
ν personalization vector or restart distribution
π̄ mean-field Personalized PageRank
π̄0 mean-field Personalized PageRank of a seed node
π̄1 mean-field Personalized PageRank of a subgraph node
π̄2 mean-field Personalized PageRank of a node outside the subgraph
E percentage of nodes in C that are misclassified by the algorithm
f(n) = ω(g(n)) f dominates g asymptotically
f(n) = Ω(g(n)) f is bounded below by g asymptotically
f(n) = Θ(g(n)) f is bounded both above and below by g asymptotically
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