31 research outputs found

    Sampling scale and season influence the observed relationship between the density of deer and questing Ixodes ricinus nymphs

    Get PDF
    BACKGROUND:The relationship between environmentally transmitted tick parasites, Ixodes spp., and their main reproductive host, deer, is generally thought to be positive. However, measuring host abundance and density directly can be challenging and indirect methods are often used. The observed relationship between the parasite and host may be affected by sampling scale and season, which could lead to different inferences being made. Here, we aimed to test the effect of sampling scale and season on the relationship between density of deer and the density of questing Ixodes ricinus nymphs. METHODS:The density of deer (primarily Dama dama) was estimated using line transect distance sampling of deer dung quantified in different seasons (winter and summer) and measured at three different nested scales (site, transect and observation level). Questing nymph density was measured using blanket drag methods and estimates were calculated at the same scales as deer density estimates. General linear models were used to evaluate the relationship between questing nymphs, deer density and other environmental variables at each sampling scale and each season deer density was measured at. RESULTS:While a positive relationship between deer density and questing nymph density was detected at the site and transect scale, no relationship was apparent at the observation level. This was likely due to increased variation and reduced precision of deer dung counts at the finest sampling scale. Seasonal changes in deer populations were observed likely reflecting seasonal shifts in habitat usage. The summer estimates of deer density explained questing nymph density whereas winter estimates did not. CONCLUSIONS:Our results show that the scale of sampling can affect the detectability of the positive association between host and vector species. Furthermore, such associations can be obscured if hosts exhibit seasonal changes in habitat use. Thus, both sampling scale and season are important to consider when investigating the relationship between host and vector species

    Host movement dominates the predicted effects of climate change on parasite transmission between wild and domestic mountain ungulates

    Get PDF
    Climate change is shifting the transmission of parasites, which is determined by host density, ambient temperature and moisture. These shifts can lead to increased pressure from parasites, in wild and domestic animals, and can impact the effectiveness of parasite control strategies. Understanding the interactive effects of climate on host movement and parasite life histories will enable targeted parasite management, to ensure livestock productivity and avoid additional stress on wildlife populations. To assess complex outcomes under climate change, we applied a gastrointestinal nematode transmission model to a montane wildlife–livestock system, based on host movement and changes in abiotic factors due to elevation, comparing projected climate change scenarios with the historic climate. The wildlife host, Alpine ibex (Capra ibex ibex), undergoes seasonal elevational migration, and livestock are grazed during the summer for eight weeks. Total parasite infection pressure was more sensitive to host movement than to the direct effect of climatic conditions on parasite availability. Extended livestock grazing is predicted to increase parasite exposure for wildlife. These results demonstrate that movement of different host species should be considered when predicting the effects of climate change on parasite transmission, and can inform decisions to support wildlife and livestock health.<br/

    Novel Allosteric Mechanism of Dual p53/MDM2 and p53/MDM4 Inhibition by a Small Molecule

    Get PDF
    Restoration of the p53 tumor suppressor for personalised cancer therapy is a promising treatment strategy. However, several high-affinity MDM2 inhibitors have shown substantial side effects in clinical trials. Thus, elucidation of the molecular mechanisms of action of p53 reactivating molecules with alternative functional principle is of the utmost importance. Here, we report a discovery of a novel allosteric mechanism of p53 reactivation through targeting the p53 N-terminus which promotes inhibition of both p53/MDM2 (murine double minute 2) and p53/MDM4 interactions. Using biochemical assays and molecular docking, we identified the binding site of two p53 reactivating molecules, RITA (reactivation of p53 and induction of tumor cell apoptosis) and protoporphyrin IX (PpIX). Ion mobility-mass spectrometry revealed that the binding of RITA to serine 33 and serine 37 is responsible for inducing the allosteric shift in p53, which shields the MDM2 binding residues of p53 and prevents its interactions with MDM2 and MDM4. Our results point to an alternative mechanism of blocking p53 interaction with MDM2 and MDM4 and may pave the way for the development of novel allosteric inhibitors of p53/MDM2 and p53/MDM4 interactions

    Reactive fragments targeting carboxylate residues employing direct to biology, high-throughput chemistry

    Get PDF
    The screening of covalent or ‘reactive’ fragment libraries against proteins is becoming an integral approach in hit identification, enabling the development of targeted covalent inhibitors and tools. To date, reactive fragment screening has been limited to targeting cysteine residues, thus restricting applicability across the proteome. Carboxylate residues present a unique opportunity to expand the accessible residues due to high proteome occurrence (∼12%). Herein, we present the development of a carboxylate-targeting reactive fragment screening platform utilising 2-aryl-5-carboxytetrazole (ACT) as the photoreactive functionality. The utility of ACT photoreactive fragments (ACT-PhABits) was evaluated by screening a 546-membered library with a small panel of purified proteins. Hits identified for BCL6 and KRASG12D were characterised by LC-MS/MS studies, revealing the selectivity of the ACT group. Finally, a photosensitised approach to ACT activation was developed, obviating the need for high energy UV-B light

    Complement membrane attack complex is an immunometabolic regulator of NLRP3 activation and IL-18 secretion in human macrophages

    Get PDF
    The complement system is an ancient and critical part of innate immunity. Recent studies have highlighted novel roles of complement beyond lysis of invading pathogens with implications in regulating the innate immune response, as well as contributing to metabolic reprogramming of T-cells, synoviocytes as well as cells in the CNS. These findings hint that complement can be an immunometabolic regulator, but whether this is also the case for the terminal step of the complement pathway, the membrane attack complex (MAC) is not clear. In this study we focused on determining whether MAC is an immunometabolic regulator of the innate immune response in human monocyte-derived macrophages. Here, we uncover previously uncharacterized metabolic changes and mitochondrial dysfunction occurring downstream of MAC deposition. These alterations in glycolytic flux and mitochondrial morphology and function mediate NLRP3 inflammasome activation, pro-inflammatory cytokine release and gasdermin D formation. Together, these data elucidate a novel signalling cascade, with metabolic alterations at its center, in MAC-stimulated human macrophages that drives an inflammatory consequence in an immunologically relevant cell type

    Landscape structure affects the prevalence and distribution of a tick-borne zoonotic pathogen

    Get PDF
    Background Landscape structure can affect pathogen prevalence and persistence with consequences for human and animal health. Few studies have examined how reservoir host species traits may interact with landscape structure to alter pathogen communities and dynamics. Using a landscape of islands and mainland sites we investigated how natural landscape fragmentation affects the prevalence and persistence of the zoonotic tick-borne pathogen complex Borrelia burgdorferi(sensu lato), which causes Lyme borreliosis. We hypothesized that the prevalence of B. burgdorferi (s.l.) would be lower on islands compared to the mainland and B. afzelii, a small mammal specialist genospecies, would be more affected by isolation than bird-associated B. garinii and B. valaisiana and the generalist B. burgdorferi (sensu stricto). Methods Questing (host-seeking) nymphal I. Ricinus ticks (n = 6567) were collected from 12 island and 6 mainland sites in 2011, 2013 and 2015 and tested for B. burgdorferi(s.l.). Deer abundance was estimated using dung transects. Results The prevalence of B. burgdorferi (s.l.) was significantly higher on the mainland (2.5%, 47/1891) compared to island sites (0.9%, 44/4673) (P &lt; 0.01). While all four genospecies of B. burgdorferi (s.l.) were detected on the mainland, bird-associated species B. garinii and B. valaisiana and the generalist genospecies B. burgdorferi(s.s.) predominated on islands. Conclusion We found that landscape structure influenced the prevalence of a zoonotic pathogen, with a lower prevalence detected among island sites compared to the mainland. This was mainly due to the significantly lower prevalence of small mammal-associated B. afzelii. Deer abundance was not related to pathogen prevalence, suggesting that the structure and dynamics of the reservoir host community underpins the observed prevalence patterns, with the higher mobility of bird hosts compared to small mammal hosts leading to a relative predominance of the bird-associated genospecies B. garinii and generalist genospecies B. burgdorferi (s.s.) on islands. In contrast, the lower prevalence of B. afzelii on islands may be due to small mammal populations there exhibiting lower densities, less immigration and stronger population fluctuations. This study suggests that landscape fragmentation can influence the prevalence of a zoonotic pathogen, dependent on the biology of the reservoir host

    Thiol-ene microfluidic chip for performing hydrogen/deuterium exchange of proteins at sub-second timescales

    No full text
    Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) has become a routine approach for sensitive analysis of the dynamic structure and interactions of proteins. However, transient conformational changes and weak affinity interactions found in many biological systems typically only perturb fast-exchanging amides in proteins. Detection of HDX changes for such amides require shorter deuterium labeling times (subsecond) than can be performed reproducibly by manual sample handling. Here, we describe the development and validation of a microfluidic chip capable of rapid on-chip protein labeling and reaction quenching. The fastHDX thiol-ene microchip is fabricated entirely using thiol-ene photochemistry. The chip has a three-channel design for introduction of protein sample, deuterated buffer, and quench buffer. Thiol-ene based monolith plugs (i.e., polymerized thiol-ene emulsions) situated within microchannels are generated in situ using a 3D-printed photolithography mask. We show that efficient on-chip mixing can be achieved at channel junctions by spatially confined in-channel monolith mixers. Using human hemoglobin (Hb), we demonstrate the ability of the chip to perform highly reproducible HDX in the 0.14–1.1 s time frame. The HDX of Hb at 0.14–1.1 s, resolved to peptide segments, correlates closely with structural features of the crystal structure of the Hb tetramer, with helices exhibiting no or minor HDX and loops undergoing pronounced HDX even at subsecond time scales. On-chip HDX of Hb at time points ranging from 0.14–1.1 s demonstrates the ability to distinguish fast exchanging amides and thus provides enhanced detection of transient structure and interactions in dynamic or exposed regions of proteins in solution

    Passage performance and behaviour of wild and stocked cyprinid fish at a sloping weir with a Low Cost Baffle fishway

    Get PDF
    Weir construction has fragmented many rivers, resulting in the exclusion of some fish populations from suitable habitat. A cheap retrofit fishway for small, sloping weirs is the Low Cost Baffle (LCB) solution – A series of notched baffles perpendicular to flow on the downstream weir face, generating an angled passage route across the weir face. To test the degree to which LCBs can pass upstream-moving, lowland-river fish at steep weirs, LCBs were fitted onto a 1:3.3-sloping gauging-weir face, in an urban tributary of the River Thames, England. The study also compared the passage of wild and stocked fish (the latter are employed to facilitate population recovery in restored English rivers). Passive Integrated Transponder (PIT) antennas were positioned on the weir to record the upstream movement of PIT-tagged barbel (Barbus barbus; nstock = 120), chub (Squalius cephalus; nstock = 119; nwild = 194), dace (Leuciscus leuciscus; nwild = 50), and roach (Rutilus rutilus; nwild = 30). Over six months, more stocked fish attempted passage (58.9%) than wild (14.6%; χ21 = 26.7, p < 0.001), but there was no difference in successful passage of those that attempted (stock = 34.0%; wild = 40.0%; χ21 = 0.5, p = 0.49). Successful passage was achieved under a range of flow conditions. This study finds that LCBs have the potential to facilitate passage for cyprinid fishes at steep urban weirs that cannot readily be removed, but there is need for design improvements. This study also indicates that stocked and wild fish exhibited similar passage success, a finding with important management implications for achieving dispersal of stocked fish as a rehabilitation measure

    Revealing the dynamic allosteric changes required for formation of the cysteine synthase complex by hydrogen-deuterium exchange mass spectrometry

    No full text
    CysE and CysK, the last two enzymes of the cysteine biosynthetic pathway, engage in a bienzyme complex, cysteine synthase, with yet incompletely characterized three-dimensional structure and regulatory function. Being absent in mammals, the two enzymes and their complex are attractive targets for antibacterial drugs. We have used hydrogen/deuterium exchange MS to unveil how complex formation affects the conformational dynamics of CysK and CysE. Our results support a model where CysE is present in solution as a dimer of trimers, and each trimer can bind one CysK homodimer. When CysK binds to one CysE monomer, intratrimer allosteric communication ensures conformational and dynamic symmetry within the trimer. Furthermore, a long-range allosteric signal propagates through CysE to induce stabilization of the interface between the two CysE trimers, preparing the second trimer for binding the second CysK with a nonrandom orientation. These results provide new molecular insights into the allosteric formation of the cysteine synthase complex and could help guide antibacterial drug design
    corecore