87 research outputs found

    \u3ci\u3eChlorella\u3c/i\u3e Virus Marburg Topoisomerase II: High DNA Cleavage Activity as a Characteristic of Chlorella Virus Type II Enzymes

    Get PDF
    Although the formation of a covalent enzyme-cleaved DNA complex is a prerequisite for the essential functions of topoisomerase II, this reaction intermediate has the potential to destabilize the genome. Consequently, all known eukaryotic type II enzymes maintain this complex at a low steady-state level. Recently, however, a novel topoisomerase II was discovered in Paramecium bursaria chlorella virus-1 (PBCV-1) that has an exceptionally high DNA cleavage activity [Fortune et al. (2001) J. Biol. Chem. 276, 24401-24408]. If robust DNA cleavage is critical to the physiological functions of chlorella virus topoisomerase II, then this remarkable characteristic should be conserved throughout the viral family. Therefore, topoisomerase II from Chlorella virus Marburg-1 (CVM-1), a distant family member, was expressed in yeast, isolated, and characterized. CVM-1 topoisomerase II is 1058 amino acids in length, making it the smallest known type II enzyme. The viral topoisomerase II displayed a high DNA strand passage activity and a DNA cleavage activity that was ~50-fold greater than that of human topoisomerase IIα. High DNA cleavage appeared to result from a greater rate of scission rather than promiscuous DNA site utilization, inordinately tight DNA binding, or diminished religation rates. Despite the fact that CVM-1 and PBCV-1 topoisomerase II share ~67% amino acid sequence identity, the two enzymes displayed clear differences in their DNA cleavage specificity/site utilization. These findings suggest that robust DNA cleavage is intrinsic to the viral enzyme and imply that chlorella virus topoisomerase II plays a physiological role beyond the control of DNA topology. Includes supplemental files

    Assessing Cyberbiosecurity Vulnerabilities and Infrastructure Resilience

    Get PDF
    The convergence of advances in biotechnology with laboratory automation, access to data, and computational biology has democratized biotechnology and accelerated the development of new therapeutics. However, increased access to biotechnology in the digital age has also introduced additional security concerns and ultimately, spawned the new discipline of cyberbiosecurity, which encompasses cybersecurity, cyber-physical security, and biosecurity considerations. With the emergence of this new discipline comes the need for a logical, repeatable, and shared approach for evaluating facility and system vulnerabilities to cyberbiosecurity threats. In this paper, we outline the foundation of an assessment framework for cyberbiosecurity, accounting for both security and resilience factors in the physical and cyber domains. This is a unique problem set, but despite the complexity of the cyberbiosecurity field in terms of operations and governance, previous experience developing and implementing physical and cyber assessments applicable to a wide spectrum of critical infrastructure sectors provides a validated point of departure for a cyberbiosecurity assessment framework. This approach proposes to integrate existing capabilities and proven methodologies from the infrastructure assessment realm (e.g., decision science, physical security, infrastructure resilience, cybersecurity) with new expertise and requirements in the cyberbiosecurity space (e.g., biotechnology, biomanufacturing, genomics) in order to forge a flexible and defensible approach to identifying and mitigating vulnerabilities. Determining where vulnerabilities reside within cyberbiosecurity business processes can help public and private sector partners create an assessment framework to identify mitigation options for consideration that are both economically and practically viable and ultimately, allow them to manage risk more effectively

    Structure in the Magnetic Field of the Milky Way Disk and Halo traced by Faraday Rotation

    Get PDF
    Magnetic fields in the ionized medium of the disk and halo of the Milky Way impose Faraday rotation on linearly polarized radio emission. We compare two surveys mapping the Galactic Faraday rotation, one showing the rotation measures of extragalactic sources seen through the Galaxy (from Hutschenreuter et al 2022), and one showing the Faraday depth of the diffuse Galactic synchrotron emission from the Global Magneto-Ionic Medium Survey. Comparing the two data sets in 5deg x 10deg bins shows good agreement at intermediate latitudes, 10 < |b| < 50 deg, and little correlation between them at lower and higher latitudes. Where they agree, both tracers show clear patterns as a function of Galactic longitude: in the Northern Hemisphere a strong sin(2 x longitude) pattern, and in the Southern hemisphere a sin(longitude + pi) pattern. Pulsars with height above or below the plane |z| > 300 pc show similar longitude dependence in their rotation measures. Nearby non-thermal structures show rotation measure shadows as does the Orion-Eridanus superbubble. We describe families of dynamo models that could explain the observed patterns in the two hemispheres. We suggest that a field reversal, known to cross the plane a few hundred pc inside the solar circle, could shift to positive z with increasing Galactic radius to explain the sin(2xlongitude) pattern in the Northern Hemisphere. Correlation shows that rotation measures from extragalactic sources are one to two times the corresponding rotation measure of the diffuse emission, implying Faraday complexity along some lines of sight, especially in the Southern hemisphere.Comment: 37 pages, 26 figures, Ap. J. accepte

    Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.

    Get PDF
    A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease

    Inhibition of Chondrosarcoma Growth by mTOR Inhibitor in an In Vivo Syngeneic Rat Model

    Get PDF
    BACKGROUND: Chondrosarcomas are the second most frequent primary malignant type of bone tumor. No effective systemic treatment has been identified in advanced or adjuvant phases for chondrosarcoma. The aim of the present study was to determine the antitumor effects of doxorubicin and everolimus, an mTOR inhibitor on chondrosarcoma progression. METHODS AND FINDINGS: Doxorubin and/or everolimus were tested in vivo as single agent or in combination in the rat orthotopic Schwarm chondrosarcoma model, in macroscopic phase, as well as with microscopic residual disease. Response to everolimus and/or doxorubicin was evaluated using chondrosarcoma volume evolution (MRI). Histological response was evaluated with % of tumor necrosis, tumor proliferation index, metabolism quantification analysis between the treated and control groups. Statistical analyses were performed using chi square, Fishers exact test. Doxorubicin single agent has no effect of tumor growth as compared to no treatment; conversely, everolimus single agent significantly inhibited tumor progression in macroscopic tumors with no synergistic additive effect with doxorubicin. Everolimus inhibited chondrosarcoma proliferation as evaluated by Ki67 expression did not induce the apoptosis of tumor cells; everolimus reduced Glut1 and 4EBP1 expression. Importantly when given in rats with microscopic residual diseases, in a pseudo neoadjuvant setting, following R1 resection of the implanted tumor, everolimus significantly delayed or prevented tumor recurrence. CONCLUSIONS: MTOR inhibitor everolimus blocks cell proliferation, Glut1 expression and HIF1a expression, and prevents in vivo chondrosarcoma tumor progression in both macroscopic and in adjuvant phase post R1 resection. Taken together, our preclinical data indicate that mTOR inhibitor may be effective as a single agent in treating chondrosarcoma patients. A clinical trial evaluating mTOr inhibitor as neo-adjuvant and adjuvant therapy in chondrosarcoma patients is being constructed

    Nanotools for Neuroscience and Brain Activity Mapping

    Get PDF
    Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function

    Export Response to Trade Liberalisation in the Presence of High Trade Costs: Evidence for a Landlocked African Economy

    Full text link

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    \u3ci\u3eChlorella\u3c/i\u3e Virus Marburg Topoisomerase II: High DNA Cleavage Activity as a Characteristic of Chlorella Virus Type II Enzymes

    Get PDF
    Although the formation of a covalent enzyme-cleaved DNA complex is a prerequisite for the essential functions of topoisomerase II, this reaction intermediate has the potential to destabilize the genome. Consequently, all known eukaryotic type II enzymes maintain this complex at a low steady-state level. Recently, however, a novel topoisomerase II was discovered in Paramecium bursaria chlorella virus-1 (PBCV-1) that has an exceptionally high DNA cleavage activity [Fortune et al. (2001) J. Biol. Chem. 276, 24401-24408]. If robust DNA cleavage is critical to the physiological functions of chlorella virus topoisomerase II, then this remarkable characteristic should be conserved throughout the viral family. Therefore, topoisomerase II from Chlorella virus Marburg-1 (CVM-1), a distant family member, was expressed in yeast, isolated, and characterized. CVM-1 topoisomerase II is 1058 amino acids in length, making it the smallest known type II enzyme. The viral topoisomerase II displayed a high DNA strand passage activity and a DNA cleavage activity that was ~50-fold greater than that of human topoisomerase IIα. High DNA cleavage appeared to result from a greater rate of scission rather than promiscuous DNA site utilization, inordinately tight DNA binding, or diminished religation rates. Despite the fact that CVM-1 and PBCV-1 topoisomerase II share ~67% amino acid sequence identity, the two enzymes displayed clear differences in their DNA cleavage specificity/site utilization. These findings suggest that robust DNA cleavage is intrinsic to the viral enzyme and imply that chlorella virus topoisomerase II plays a physiological role beyond the control of DNA topology. Includes supplemental files
    corecore