4,330 research outputs found
Surface abundances of ON stars
Massive stars burn hydrogen through the CNO cycle during most of their
evolution. When mixing is efficient, or when mass transfer in binary systems
happens, chemically processed material is observed at the surface of O and B
stars. ON stars show stronger lines of nitrogen than morphologically normal
counterparts. Whether this corresponds to the presence of material processed
through the CNO cycle or not is not known. Our goal is to answer this question.
We perform a spectroscopic analysis of a sample of ON stars with atmosphere
models. We determine the fundamental parameters as well as the He, C, N, and O
surface abundances. We also measure the projected rotational velocities. We
compare the properties of the ON stars to those of normal O stars. We show that
ON stars are usually helium-rich. Their CNO surface abundances are fully
consistent with predictions of nucleosynthesis. ON stars are more chemically
evolved and rotate - on average - faster than normal O stars. Evolutionary
models including rotation cannot account for the extreme enrichment observed
among ON main sequence stars. Some ON stars are members of binary systems, but
others are single stars as indicated by stable radial velocities. Hence, mass
transfer is not a simple explanation for the observed chemical properties. We
conclude that ON stars show extreme chemical enrichment at their surface,
consistent with nucleosynthesis through the CNO cycle. Its origin is not clear
at present.Comment: 18 pages, 10 figures (+ appendix). A&A accepte
Recommended from our members
Major requirements for building Smart Homes in Smart Cities based on Internet of Things technologies
The recent boom in the Internet of Things (IoT) will turn Smart Cities and Smart Homes (SH) from hype to reality. SH is the major building block for Smart Cities and have long been a dream for decades, hobbyists in the late 1970s made Home Automation (HA) possible when personal computers started invading home spaces. While SH can share most of the IoT technologies, there are unique characteristics that make SH special. From the result of a recent research survey on SH and IoT technologies, this paper defines the major requirements for building SH. Seven unique requirement recommendations are defined and classified according to the specific quality of the SH building blocks
Recommended from our members
Dictionary memory based software architecture for distributed bluetooth low energy host controllers enabling high coverage in consumer residential healthcare environments
Technology has been seen as a possible solution to the increasing costs of healthcare and the globally aging population. It is known that many elderly people prefer to stay in their homes for as long as possible and remote monitoring can be a solution, but often such systems lack useful information or are prohibitive due to cost, ease of use/deployment and wireless coverage.
This work presents a novel gateway software architecture based on threads being managed by dictionary memory. The architecture has been deployed in a distributed interconnected set of low-cost consumer grade gateway devices using Bluetooth Low Energy (BLE) that are positioned around the home. The gateway devices can then be used to listen, monitor or connect to BLE based healthcare sensors to continually reveal information about the user with full residential coverage. A further novelty of this work is the ability to maintain handover connections between many sensors and many gateways as a user moves throughout their home, thus the gateways can route information to/from sensors across the consumer’s home network. The system has been tested in an experimental house and is now poised to be initially deployed to 100 homes for residential healthcare monitoring before any public mass consumer deployment
Evidence of magnetic field decay in massive main-sequence stars
A significant fraction of massive main-sequence stars show strong,
large-scale magnetic fields. The origin of these fields, their lifetimes, and
their role in shaping the characteristics and evolution of massive stars are
currently not well understood. We compile a catalogue of 389 massive
main-sequence stars, 61 of which are magnetic, and derive their fundamental
parameters and ages. The two samples contain stars brighter than magnitude 9 in
the V band and range in mass between 5 and 100 Msun. We find that the
fractional main-sequence age distribution of all considered stars follows what
is expected for a magnitude limited sample, while that of magnetic stars shows
a clear decrease towards the end of the main sequence. This dearth of old
magnetic stars is independent of the choice of adopted stellar evolution
tracks, and appears to become more prominent when considering only the most
massive stars. We show that the decreasing trend in the distribution is
significantly stronger than expected from magnetic flux conservation. We also
find that binary rejuvenation and magnetic suppression of core convection are
unlikely to be responsible for the observed lack of older magnetic massive
stars, and conclude that its most probable cause is the decay of the magnetic
field, over a time span longer than the stellar lifetime for the lowest
considered masses, and shorter for the highest masses. We then investigate the
spin-down ages of the slowly rotating magnetic massive stars and find them to
exceed the stellar ages by far in many cases. The high fraction of very slowly
rotating magnetic stars thus provides an independent argument for a decay of
the magnetic fields.Comment: Accepted for publication on A&A; 9 pages, 8 figure
Transitioning from military medics to registered nurses
The nursing shortage in the USA is expected to reach 260,000 registered nurses (RNs) by 2025. The most profound shortages are expected in California and Florida, translating into 109,779 and 128,364 RN jobs, respectively. Despite a foreseen growth in nursing career opportunities nationwide, the supply of nurses will be insufficient to meet the corresponding demand. Capitalizing on prior education, experience, and skills of military clinical personnel to fill these jobs could significantly reduce the projected nursing shortage. Florida International University’s Nicole Wertheim College of Nursing and Health Sciences is circumventing barriers to recruit, retain, and graduate transitioning veteran medics and corpsmen as Bachelor of Science in Nursing prepared RNs who reintegrate into the civilian workforce. The Veteran Bachelor of Science in Nursing (VBSN) program is in the form of a cooperative agreement between Florida International University and the US Health Resources and Services Administration. The VBSN program’s main objective is to build upon the unique leadership skills, clinical education, and training of military medics and corpsmen to ensure successful completion of the Bachelor of Science in Nursing curriculum. VBSN students, as veterans themselves, have unique knowledge and exposure to the specific health issues and needs of the veteran population overall. They are poised and best prepared to effectively care for the US population, particularly the current 22 million US veterans and 1.6 million Florida veterans. Additionally, the VBSN program will alleviate the challenges, such as the lack of recognition of military skills, unemployment, the substandard income, and homelessness that many former service members face after separation from the military
Assessing the efficiency of Laser-Induced Breakdown Spectroscopy (LIBS) based sorting of post-consumer aluminium scrap
The aluminium Twitch fraction of a Belgian recycling facility could be further sorted by implementing Laser-Induced Breakdown Spectroscopy (LIBS). To achieve this goal, the presented research identifies commercially interesting output fractions and investigates machine learning methods to classify the post-consumer aluminium scrap samples based on the spectral data collected by the LIBS sensor for 834 aluminium scrap pieces. The classification performance is assessed with X-Ray Fluorescence (XRF) reference measurements of the investigated aluminium samples, and expressed in terms of accuracy, precision, recall, and f1 score. Finally, the influence of misclassifications on the composition of the desired output fractions is evaluated.Peer ReviewedPostprint (published version
Variational analysis for a generalized spiked harmonic oscillator
A variational analysis is presented for the generalized spiked harmonic
oscillator Hamiltonian operator H, where H = -(d/dx)^2 + Bx^2+ A/x^2 +
lambda/x^alpha, and alpha and lambda are real positive parameters. The
formalism makes use of a basis provided by exact solutions of Schroedinger's
equation for the Gol'dman and Krivchenkov Hamiltonian (alpha = 2), and the
corresponding matrix elements that were previously found. For all the discrete
eigenvalues the method provides bounds which improve as the dimension of the
basis set is increased. Extension to the N-dimensional case in arbitrary
angular-momentum subspaces is also presented. By minimizing over the free
parameter A, we are able to reduce substantially the number of basis functions
needed for a given accuracy.Comment: 15 pages, 1 figur
A Sample of Intermediate-Mass Star-Forming Regions: Making Stars at Mass Column Densities <1 g/cm^2
In an effort to understand the factors that govern the transition from low-
to high-mass star formation, we identify for the first time a sample of
intermediate-mass star-forming regions (IM SFRs) where stars up to - but not
exceeding - 8 solar masses are being produced. We use IRAS colors and Spitzer
Space Telescope mid-IR images, in conjunction with millimeter continuum and CO
maps, to compile a sample of 50 IM SFRs in the inner Galaxy. These are likely
to be precursors to Herbig AeBe stars and their associated clusters of low-mass
stars. IM SFRs constitute embedded clusters at an early evolutionary stage akin
to compact HII regions, but they lack the massive ionizing central star(s). The
photodissociation regions that demarcate IM SFRs have typical diameters of ~1
pc and luminosities of ~10^4 solar luminosities, making them an order of
magnitude less luminous than (ultra)compact HII regions. IM SFRs coincide with
molecular clumps of mass ~10^3 solar masses which, in turn, lie within larger
molecular clouds spanning the lower end of the giant molecular cloud mass
range, 10^4-10^5 solar masses. The IR luminosity and associated molecular mass
of IM SFRs are correlated, consistent with the known luminosity-mass
relationship of compact HII regions. Peak mass column densities within IM SFRs
are ~0.1-0.5 g/cm^2, a factor of several lower than ultra-compact HII regions,
supporting the proposition that there is a threshold for massive star formation
at ~1 g/cm^2.Comment: 61 pages, 6 tables, 20 figures. Accepted for publication in the
Astronomical Journa
- …