4,330 research outputs found

    Surface abundances of ON stars

    Get PDF
    Massive stars burn hydrogen through the CNO cycle during most of their evolution. When mixing is efficient, or when mass transfer in binary systems happens, chemically processed material is observed at the surface of O and B stars. ON stars show stronger lines of nitrogen than morphologically normal counterparts. Whether this corresponds to the presence of material processed through the CNO cycle or not is not known. Our goal is to answer this question. We perform a spectroscopic analysis of a sample of ON stars with atmosphere models. We determine the fundamental parameters as well as the He, C, N, and O surface abundances. We also measure the projected rotational velocities. We compare the properties of the ON stars to those of normal O stars. We show that ON stars are usually helium-rich. Their CNO surface abundances are fully consistent with predictions of nucleosynthesis. ON stars are more chemically evolved and rotate - on average - faster than normal O stars. Evolutionary models including rotation cannot account for the extreme enrichment observed among ON main sequence stars. Some ON stars are members of binary systems, but others are single stars as indicated by stable radial velocities. Hence, mass transfer is not a simple explanation for the observed chemical properties. We conclude that ON stars show extreme chemical enrichment at their surface, consistent with nucleosynthesis through the CNO cycle. Its origin is not clear at present.Comment: 18 pages, 10 figures (+ appendix). A&A accepte

    Evidence of magnetic field decay in massive main-sequence stars

    Get PDF
    A significant fraction of massive main-sequence stars show strong, large-scale magnetic fields. The origin of these fields, their lifetimes, and their role in shaping the characteristics and evolution of massive stars are currently not well understood. We compile a catalogue of 389 massive main-sequence stars, 61 of which are magnetic, and derive their fundamental parameters and ages. The two samples contain stars brighter than magnitude 9 in the V band and range in mass between 5 and 100 Msun. We find that the fractional main-sequence age distribution of all considered stars follows what is expected for a magnitude limited sample, while that of magnetic stars shows a clear decrease towards the end of the main sequence. This dearth of old magnetic stars is independent of the choice of adopted stellar evolution tracks, and appears to become more prominent when considering only the most massive stars. We show that the decreasing trend in the distribution is significantly stronger than expected from magnetic flux conservation. We also find that binary rejuvenation and magnetic suppression of core convection are unlikely to be responsible for the observed lack of older magnetic massive stars, and conclude that its most probable cause is the decay of the magnetic field, over a time span longer than the stellar lifetime for the lowest considered masses, and shorter for the highest masses. We then investigate the spin-down ages of the slowly rotating magnetic massive stars and find them to exceed the stellar ages by far in many cases. The high fraction of very slowly rotating magnetic stars thus provides an independent argument for a decay of the magnetic fields.Comment: Accepted for publication on A&A; 9 pages, 8 figure

    Transitioning from military medics to registered nurses

    Get PDF
    The nursing shortage in the USA is expected to reach 260,000 registered nurses (RNs) by 2025. The most profound shortages are expected in California and Florida, translating into 109,779 and 128,364 RN jobs, respectively. Despite a foreseen growth in nursing career opportunities nationwide, the supply of nurses will be insufficient to meet the corresponding demand. Capitalizing on prior education, experience, and skills of military clinical personnel to fill these jobs could significantly reduce the projected nursing shortage. Florida International University’s Nicole Wertheim College of Nursing and Health Sciences is circumventing barriers to recruit, retain, and graduate transitioning veteran medics and corpsmen as Bachelor of Science in Nursing prepared RNs who reintegrate into the civilian workforce. The Veteran Bachelor of Science in Nursing (VBSN) program is in the form of a cooperative agreement between Florida International University and the US Health Resources and Services Administration. The VBSN program’s main objective is to build upon the unique leadership skills, clinical education, and training of military medics and corpsmen to ensure successful completion of the Bachelor of Science in Nursing curriculum. VBSN students, as veterans themselves, have unique knowledge and exposure to the specific health issues and needs of the veteran population overall. They are poised and best prepared to effectively care for the US population, particularly the current 22 million US veterans and 1.6 million Florida veterans. Additionally, the VBSN program will alleviate the challenges, such as the lack of recognition of military skills, unemployment, the substandard income, and homelessness that many former service members face after separation from the military

    Assessing the efficiency of Laser-Induced Breakdown Spectroscopy (LIBS) based sorting of post-consumer aluminium scrap

    Get PDF
    The aluminium Twitch fraction of a Belgian recycling facility could be further sorted by implementing Laser-Induced Breakdown Spectroscopy (LIBS). To achieve this goal, the presented research identifies commercially interesting output fractions and investigates machine learning methods to classify the post-consumer aluminium scrap samples based on the spectral data collected by the LIBS sensor for 834 aluminium scrap pieces. The classification performance is assessed with X-Ray Fluorescence (XRF) reference measurements of the investigated aluminium samples, and expressed in terms of accuracy, precision, recall, and f1 score. Finally, the influence of misclassifications on the composition of the desired output fractions is evaluated.Peer ReviewedPostprint (published version

    Variational analysis for a generalized spiked harmonic oscillator

    Get PDF
    A variational analysis is presented for the generalized spiked harmonic oscillator Hamiltonian operator H, where H = -(d/dx)^2 + Bx^2+ A/x^2 + lambda/x^alpha, and alpha and lambda are real positive parameters. The formalism makes use of a basis provided by exact solutions of Schroedinger's equation for the Gol'dman and Krivchenkov Hamiltonian (alpha = 2), and the corresponding matrix elements that were previously found. For all the discrete eigenvalues the method provides bounds which improve as the dimension of the basis set is increased. Extension to the N-dimensional case in arbitrary angular-momentum subspaces is also presented. By minimizing over the free parameter A, we are able to reduce substantially the number of basis functions needed for a given accuracy.Comment: 15 pages, 1 figur

    A Sample of Intermediate-Mass Star-Forming Regions: Making Stars at Mass Column Densities <1 g/cm^2

    Full text link
    In an effort to understand the factors that govern the transition from low- to high-mass star formation, we identify for the first time a sample of intermediate-mass star-forming regions (IM SFRs) where stars up to - but not exceeding - 8 solar masses are being produced. We use IRAS colors and Spitzer Space Telescope mid-IR images, in conjunction with millimeter continuum and CO maps, to compile a sample of 50 IM SFRs in the inner Galaxy. These are likely to be precursors to Herbig AeBe stars and their associated clusters of low-mass stars. IM SFRs constitute embedded clusters at an early evolutionary stage akin to compact HII regions, but they lack the massive ionizing central star(s). The photodissociation regions that demarcate IM SFRs have typical diameters of ~1 pc and luminosities of ~10^4 solar luminosities, making them an order of magnitude less luminous than (ultra)compact HII regions. IM SFRs coincide with molecular clumps of mass ~10^3 solar masses which, in turn, lie within larger molecular clouds spanning the lower end of the giant molecular cloud mass range, 10^4-10^5 solar masses. The IR luminosity and associated molecular mass of IM SFRs are correlated, consistent with the known luminosity-mass relationship of compact HII regions. Peak mass column densities within IM SFRs are ~0.1-0.5 g/cm^2, a factor of several lower than ultra-compact HII regions, supporting the proposition that there is a threshold for massive star formation at ~1 g/cm^2.Comment: 61 pages, 6 tables, 20 figures. Accepted for publication in the Astronomical Journa
    • …
    corecore