50 research outputs found
Molecular cross talk between misfolded proteins in animal models of Alzheimer\u27s and prion diseases.
The central event in protein misfolding disorders (PMDs) is the accumulation of a misfolded form of a naturally expressed protein. Despite the diversity of clinical symptoms associated with different PMDs, many similarities in their mechanism suggest that distinct pathologies may cross talk at the molecular level. The main goal of this study was to analyze the interaction of the protein misfolding processes implicated in Alzheimer\u27s and prion diseases. For this purpose, we inoculated prions in an Alzheimer\u27s transgenic mouse model that develop typical amyloid plaques and followed the progression of pathological changes over time. Our findings show a dramatic acceleration and exacerbation of both pathologies. The onset of prion disease symptoms in transgenic mice appeared significantly faster with a concomitant increase on the level of misfolded prion protein in the brain. A striking increase in amyloid plaque deposition was observed in prion-infected mice compared with their noninoculated counterparts. Histological and biochemical studies showed the association of the two misfolded proteins in the brain and in vitro experiments showed that protein misfolding can be enhanced by a cross-seeding mechanism. These results suggest a profound interaction between Alzheimer\u27s and prion pathologies, indicating that one protein misfolding process may be an important risk factor for the development of a second one. Our findings may have important implications to understand the origin and progression of PMDs
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
VIII Encuentro de Docentes e Investigadores en Historia del Diseño, la Arquitectura y la Ciudad
Acta de congresoLa conmemoración de los cien años de la Reforma Universitaria de 1918 se presentó como una ocasión propicia para debatir el rol de la historia, la teoría y la crítica en la formación y en la práctica profesional de diseñadores, arquitectos y urbanistas.
En ese marco el VIII Encuentro de Docentes e Investigadores en Historia del Diseño, la Arquitectura y la Ciudad constituyó un espacio de intercambio y reflexión cuya realización ha sido posible gracias a la colaboración entre Facultades de Arquitectura, Urbanismo y Diseño de la Universidad Nacional y la Facultad de Arquitectura de la Universidad Católica de Córdoba, contando además con la activa participación de mayoría de las Facultades, Centros e Institutos de Historia de la Arquitectura del país y la región.
Orientado en su convocatoria tanto a docentes como a estudiantes de Arquitectura y Diseño Industrial de todos los niveles de la FAUD-UNC promovió el debate de ideas a partir de experiencias concretas en instancias tales como mesas temáticas de carácter interdisciplinario, que adoptaron la modalidad de presentación de ponencias, entre otras actividades.
En el ámbito de VIII Encuentro, desarrollado en la sede Ciudad Universitaria de Córdoba, se desplegaron numerosas posiciones sobre la enseñanza, la investigación y la formación en historia, teoría y crítica del diseño, la arquitectura y la ciudad; sumándose el aporte realizado a través de sus respectivas conferencias de Ana Clarisa Agüero, Bibiana Cicutti, Fernando Aliata y Alberto Petrina. El conjunto de ponencias que se publican en este Repositorio de la UNC son el resultado de dos intensas jornadas de exposiciones, cuyos contenidos han posibilitado actualizar viejos dilemas y promover nuevos debates.
El evento recibió el apoyo de las autoridades de la FAUD-UNC, en especial de la Secretaría de Investigación y de la Biblioteca de nuestra casa, como así también de la Facultad de Arquitectura de la UCC; va para todos ellos un especial agradecimiento
Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study
Summary
Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally.
Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies
have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of
the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income
countries globally, and identified factors associated with mortality.
Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to
hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis,
exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a
minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical
status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary
intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause,
in-hospital mortality for all conditions combined and each condition individually, stratified by country income status.
We did a complete case analysis.
Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital
diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal
malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome
countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male.
Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3).
Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income
countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups).
Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome
countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries;
p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients
combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11],
p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20
[1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention
(ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety
checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed
(ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of
parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65
[0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality.
Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome,
middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will
be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger
than 5 years by 2030
Catalytically Active Amyloids as Future Bionanomaterials
Peptides and proteins can aggregate into highly ordered and structured conformations called amyloids. These supramolecular structures generally have convergent features, such as the formation of intermolecular beta sheets, that lead to fibrillary architectures. The resulting fibrils have unique mechanical properties that can be exploited to develop novel nanomaterials. In recent years, sequences of small peptides have been rationally designed to self-assemble into amyloids that catalyze several chemical reactions. These amyloids exhibit reactive surfaces that can mimic the active sites of enzymes. In this review, I provide a state-of-the-art summary of the development of catalytically active amyloids. I will focus especially on catalytic activities mediated by hydrolysis, which are the most studied examples to date, as well as novel types of recently reported activities that promise to expand the possible repertoires. The combination of mechanical properties with catalytic activity in an amyloid scaffold has great potential for the development of future bionanomaterials aimed at specific applications
Catalytic Amyloids as Novel Synthetic Hydrolases
Amyloids are supramolecular assemblies composed of polypeptides stabilized by an intermolecular beta-sheet core. These misfolded conformations have been traditionally associated with pathological conditions such as Alzheimer’s and Parkinson´s diseases. However, this classical paradigm has changed in the last decade since the discovery that the amyloid state represents a universal alternative fold accessible to virtually any polypeptide chain. Moreover, recent findings have demonstrated that the amyloid fold can serve as catalytic scaffolds, creating new opportunities for the design of novel active bionanomaterials. Here, we review the latest advances in this area, with particular emphasis on the design and development of catalytic amyloids that exhibit hydrolytic activities. To date, three different types of activities have been demonstrated: esterase, phosphoesterase and di-phosphohydrolase. These artificial hydrolases emerge upon the self-assembly of small peptides into amyloids, giving rise to catalytically active surfaces. The highly stable nature of the amyloid fold can provide an attractive alternative for the design of future synthetic hydrolases with diverse applications in the industry, such as the in situ decontamination of xenobiotics
Kosmotropic Anions Promote Conversion of Recombinant Prion Protein into a PrP Sc-Like Misfolded Form
Prions are self-propagating proteins involved in transmissible spongiform encephalopaties in mammals. An aberrant conformation with amyloid-like features of a cell surface protein, termed prion protein (PrP), is thought to be the essential component of the infectious particle, though accessory co-factor molecules such as lipids and nucleotides may be involved. The cellular co-factors and environmental conditions implicated in PrP misfolding are not completely understood. To address this issue, several studies have been done inducing misfolding of recombinant PrP (recPrP) into classical amyloid structures using partially denaturing conditions. In this work, we report that misfolding of recPrP into PrP Sc-like aggregates can be induced by simply incubating the protein in the presence of kosmotropic salts at concentrations that are known to retain or increase the stability of the protein. We used a simple experimental reaction (protein, buffer and salts) submitted to agitation/incubation cycles at physiological temperature and pH. The formation of protease resistant-recPrP was time and salt-concentration dependent and required the presence of kosmotropic anions such as F 2 or SO4 22. The molecular weights of the protease resistant recPrP fragments are reminiscent of those found in degradation assays of bona fide PrP Sc. The aggregates also exhibited PrP Sc-like ultrastructural features including rod-shape morphology under electron microscope, high beta-sheet content and thioflavin-T positive signal. The formation of recPrP aggregates with PrP Sc biochemical features under conditions closer to physiological in the absence of organic co-factor molecules provides a simple setup that ma
RecPrP<sup>res</sup> aggregates are similarly neurotoxic as PrP27-30.
<p>RecPrP<sup>res</sup> aggregates were produced by incubation for 24 hrs with 400 mM NaF followed by PK-digestion for 1 hrs at 37°C. 100, 50 and 25 nM of dialyzed recPrP<sup>res</sup> aggregates were added to the medium of 1×10<sup>5</sup> N2A neuroblastoma cells and cell viability was measured after 24 hrs of incubation using the MTT assay. As a negative control, the same volume of PBS was added to the well (control). Purified PrP27-30 from RML infected mice brain, soluble recPrP (recPrP) and the reaction buffer without protein (buffer) were also assayed as controls. All experiments were done in triplicate and the values correspond to the average ± standard error. The reduction of cell viability produced by addition of recPrP<sup>res</sup> or PrP<sup>Sc</sup> was highly significantly (P<0.001) different from soluble recPrP and the buffer control, as determined by student t-test.</p