6 research outputs found

    Conditional prediction of consecutive tumor evolution using cancer progression models: What genotype comes next?

    Full text link
    Accurate prediction of tumor progression is key for adaptive therapy and precision medicine. Cancer progression models (CPMs) can be used to infer dependencies in mutation accumulation from cross-sectional data and provide predictions of tumor progression paths. However, their performance when predicting complete evolutionary trajectories is limited by violations of assumptions and the size of available data sets. Instead of predicting full tumor progression paths, here we focus on short-term predictions, more relevant for diagnostic and therapeutic purposes. We examine whether five distinct CPMs can be used to answer the question “Given that a genotype with n mutations has been observed, what genotype with n + 1 mutations is next in the path of tumor progression?” or, shortly, “What genotype comes next?”. Using simulated data we find that under specific combinations of genotype and fitness landscape characteristics CPMs can provide predictions of short-term evolution that closely match the true probabilities, and that some genotype characteristics can be much more relevant than global features. Application of these methods to 25 cancer data sets shows that their use is hampered by a lack of information needed to make principled decisions about method choice. Fruitful use of these methods for short-term predictions requires adapting method’s use to local genotype characteristics and obtaining reliable indicators of performance; it will also be necessary to clarify the interpretation of the method’s results when key assumptions do not holdSupported by grant BFU2015-67302-R (MINECO/FEDER, EU) funded by MCIN/AEI/ 10.13039/501100011033 and by ERDF A way of making Europe and by grant PID2019-111256RBI00 funded by MCIN/AEI/10.13039/501100011033 to RDU. JDC supported by PEJD-2018-POST/ BMD-8960 from Comunidad de Madrid to RDUGobierno de España. BFU2015-67302-RGobierno de España. PID2019-111256RBI0

    GeneSrF and varSelRF: a web-based tool and R package for gene selection and classification using random forest

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray data are often used for patient classification and gene selection. An appropriate tool for end users and biomedical researchers should combine user friendliness with statistical rigor, including carefully avoiding selection biases and allowing analysis of multiple solutions, together with access to additional functional information of selected genes. Methodologically, such a tool would be of greater use if it incorporates state-of-the-art computational approaches and makes source code available.</p> <p>Results</p> <p>We have developed GeneSrF, a web-based tool, and varSelRF, an R package, that implement, in the context of patient classification, a validated method for selecting very small sets of genes while preserving classification accuracy. Computation is parallelized, allowing to take advantage of multicore CPUs and clusters of workstations. Output includes bootstrapped estimates of prediction error rate, and assessments of the stability of the solutions. Clickable tables link to additional information for each gene (GO terms, PubMed citations, KEGG pathways), and output can be sent to PaLS for examination of PubMed references, GO terms, KEGG and and Reactome pathways characteristic of sets of genes selected for class prediction. The full source code is available, allowing to extend the software. The web-based application is available from <url>http://genesrf2.bioinfo.cnio.es</url>. All source code is available from Bioinformatics.org or The Launchpad. The R package is also available from CRAN.</p> <p>Conclusion</p> <p>varSelRF and GeneSrF implement a validated method for gene selection including bootstrap estimates of classification error rate. They are valuable tools for applied biomedical researchers, specially for exploratory work with microarray data. Because of the underlying technology used (combination of parallelization with web-based application) they are also of methodological interest to bioinformaticians and biostatisticians.</p

    Simulating evolution in asexual populations with epistasis

    Full text link
    I show how to use OncoSimulR, software for forward-time genetic simulations, to simulate evolution of asexual populations in the presence of epistatic interactions. This chapter emphasizes the specification of fitness and epistasis, both directly (i.e., specifying the effects of individual mutations and their epistatic interactions) and indirectly (using models for random fitness landscapes)Supported by BFU2015-67302-R (MINECO/FEDER, EU) to RD

    Identification of MST1/STK4 and SULF1 proteins as autoantibody targets for the diagnosis of colorectal cancer by using phage microarrays

    No full text
    10 páginas, 5 figuras, 2 tablasThe characterization of the humoral response in cancer patients is becoming a practical alternative to improve early detection. We prepared phage microarrays containing colorectal cancer cDNA libraries to identify phage-expressed peptides recognized by tumor-specific autoantibodies from patient sera. From a total of 1536 printed phages, 128 gave statistically significant values to discriminate cancer patients from control samples. From this, 43 peptide sequences were unique following DNA sequencing. Six phages containing homologous sequences to STK4/MST1, SULF1, NHSL1, SREBF2, GRN, and GTF2I were selected to build up a predictor panel. A previous study with high-density protein microarrays had identified STK4/MST1 as a candidate biomarker. An independent collection of 153 serum samples (50 colorectal cancer sera and 103 reference samples, including healthy donors and sera from other related pathologies) was used as a validation set to study prediction capability. A combination of four phages and two recombinant proteins, corresponding to MST1 and SULF1, achieved an area under the curve of 0.86 to correctly discriminate cancer from healthy sera. Inclusion of sera from other different neoplasias did not change significantly this value. For early stages (A+B), the corrected area under the curve was 0.786. Moreover, we have demonstrated that MST1 and SULF1 proteins, homologous to phage-peptide sequences, can replace the original phages in the predictor panel, improving their diagnostic accuracyThis research was supported by grants from the Spanish Ministry of Education and Science BIO2009-08818, “Proyecto Intramural de Incorporación-CSIC”, Colomics Programme of the regional government of Madrid and grants from the Fundación Médica Mutua Madrileña, Instituto de Salud Carlos III (FIS 05/1006 and 08/1635), the CIBERESP G55, the “Acción transversal del cancer” and the Proteored platformPeer reviewe

    An Epistatic Interaction between the PAX8 and STK17B Genes in Papillary Thyroid Cancer Susceptibility

    No full text
    Papillary Thyroid Cancer (PTC) is a heterogeneous and complex disease; susceptibility to PTC is influenced by the joint effects of multiple common, low-penetrance genes, although relatively few have been identified to date. Here we applied a rigorous combined approach to assess both the individual and epistatic contributions of genetic factors to PTC susceptibility, based on one of the largest series of thyroid cancer cases described to date. In addition to identifying the involvement of TSHR variation in classic PTC, our pioneer study of epistasis revealed a significant interaction between variants in STK17B and PAX8. The interaction was detected by MD-MBR (p = 0.00010) and confirmed by other methods, and then replicated in a second independent series of patients (MD-MBR p = 0.017). Furthermore, we demonstrated an inverse correlation between expression of PAX8 and STK17B in a set of cell lines derived from human thyroid carcinomas. Overall, our work sheds additional light on the genetic basis of thyroid cancer susceptibility, and suggests a new direction for the exploration of the inherited genetic contribution to disease using association studies
    corecore