27,042 research outputs found

    The critical current of YBa2Cu3O7-d Low Angle Grain Boundaries

    Get PDF
    Transport critical current measurements have been performed on 5 degree [001]-tilt thin film YBa2Cu3O7-delta single grain boundaries with magnetic field rotated in the plane of the film, phi. The variation of the critical current has been determined as a function of the angle between the magnetic field and the grain boundary plane. In applied fields above 1 T the critical current, j_c, is found to be strongly suppressed only when the magnetic field is within an angle phi_k of the grain boundary. Outside this angular range the behavior of the artificial grain boundary is dominated by the critical current of the grains. We show that the phi dependence of j_c in the suppressed region is well described by a flux cutting model.Comment: To be published in PRL, new version with minor changes following referees report

    The massive multiple system HD 64315

    Get PDF
    The O6 Vn star HD 64315 is believed to belong to the star-forming region known as NGC 2467, but previous distance estimates do not support this association. We explore the multiple nature of this star with the aim of determining its distance, and understanding its connection to NGC 2467. A total of 52 high-resolution spectra have been gathered over a decade. We use their analysis, in combination with the photometric data from All Sky Automated Survey and Hipparcos catalogues, to conclude that HD 64315 is composed of at least two spectroscopic binaries, one of which is an eclipsing binary. HD 64315 contains two binary systems, one of which is an eclipsing binary. The two binaries are separated by 0.09 arcsec (or 500 AU) if the most likely distance to the system, around 5 kpc, is considered. The presence of fainter companions is not excluded by current observations. The non-eclipsing binary (HD 64315 AaAb) has a period of 2.70962901+/-0.00000021 d. Its components are hotter than those of the eclipsing binary, and dominate the appearance of the system. The eclipsing binary (HD 64315 BaBb) has a shorter period of 1.0189569+/-0.0000008 d. We derive masses of 14.6+-2.3 M⊙_\odot for both components of the BaBb system. They are almost identical; both stars are overfilling their respective Roche lobes, and share a common envelope in an overcontact configuration. The non-eclipsing binary is a detached system composed of two stars with spectral types around O6 V with minimum masses of 10.8 M⊙_\odot and 10.2 M⊙_\odot, and likely masses aprox. 30 M⊙_\odot. HD 64315 provides a cautionary tale about high-mass star isolation and multiplicity. Its total mass is likely above 90 M⊙_\odot,but it seems to have formed without an accompanying cluster. It contains one the most massive overcontact binaries known, a likely merger progenitor in a very wide multiple system.Comment: 14 pages, 13 figures, 8 Table

    Classical Novae as a Probe of the Cataclysmic Variable Population

    Full text link
    Classical Novae (CNe) are the brightest manifestation of mass transfer onto a white dwarf in a cataclysmic variable (CV). As such, they are probes of the mass transfer rate, Mdot, and WD mass, Mwd, in these interacting binaries. Our calculations of the dependence of the CN ignition mass, Mign, on Mdot and Mwd yields the recurrence times of these explosions. We show that the observed CNe orbital period distribution is consistent with the interrupted magnetic braking evolutionary scenario, where at orbital periods Porb > 3 hr mass transfer is driven by angular momentum loss via a wind from the companion star and at Porb < 3 hr by gravitational radiation. About 50% of CNe occur in binaries accreting at Mdot ~= 10^{-9} Msun/yr with Porb = 3-4 hr, with the remaining 50% split evenly between Porb longer (higher Mdot) and shorter (lower Mdot) than this. This resolution of the relative contribution to the CN rate from different CVs tells us that 3(9)x10^5 CVs with WD mass 1.0(0.6)Msun are needed to produce one CN per year. Using the K-band specific CN rate measured in external galaxies, we find a CV birthrate of 2(4)x10^{-4}/yr per 10^{10}Lsun,K, very similar to the luminosity specific Type Ia supernova rate in elliptical galaxies. Likewise, we predict that there should be 60-180 CVs for every 10^6Lsun,K in an old stellar population, similar to the number of X-ray identified CVs in the globular cluster 47 Tuc, showing no overabundance relative to the field. Using a two-component steady state model of CV evolution we show that the fraction of CVs which are magnetic (22%) implies a birthrate of 8% relative to non-magnetic CVs, similar to the fraction of strongly magnetic field WDs. (abridged)Comment: 6 pages, 2 figures, Accepted to the Astrophysical Journa

    In vivo cranial bone strain and bite force in the agamid lizard Uromastyx geyri

    Get PDF
    In vivo bone strain data are the most direct evidence of deformation and strain regimes in the vertebrate cranium during feeding and can provide important insights into skull morphology. Strain data have been collected during feeding across a wide range of mammals; in contrast, in vivo cranial bone strain data have been collected from few sauropsid taxa. Here we present bone strain data recorded from the jugal of the herbivorous agamid lizard Uromastyx geyri along with simultaneously recorded bite force. Principal and shear strain magnitudes in Uromastyx geyri were lower than cranial bone strains recorded in Alligator mississippiensis, but higher than those reported from herbivorous mammals. Our results suggest that variations in principal strain orientations in the facial skeleton are largely due to differences in feeding behavior and bite location, whereas food type has little impact on strain orientations. Furthermore, mean principal strain orientations differ between male and female Uromastyx during feeding, potentially because of sexual dimorphism in skull morphology

    Cooling Tests of the NectarCAM camera for the Cherenkov Telescope Array

    Full text link
    The NectarCAM is a camera proposed for the medium-sized telescopes in the framework of the Cherenkov Telescope Array (CTA), the next-generation observatory for very-high-energy gamma-ray astronomy. The cameras are designed to operate in an open environment and their mechanics must provide protection for all their components under the conditions defined for the CTA observatory. In order to operate in a stable environment and ensure the best physics performance, each NectarCAM will be enclosed in a slightly overpressurized, nearly air-tight, camera body, to prevent dust and water from entering. The total power dissipation will be ~7.7 kW for a 1855-pixel camera. The largest fraction is dissipated by the readout electronics in the modules. We present the design and implementation of the cooling system together with the test bench results obtained on the NectarCAM thermal demonstrator.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Solving the SUSY CP problem with flavor breaking F-terms

    Full text link
    Supersymmetric flavor models for the radiative generation of fermion masses offer an alternative way to solve the SUSY-CP problem. We assume that the supersymmetric theory is flavor and CP conserving. CP violating phases are associated to the vacuum expectation values of flavor violating susy-breaking fields. As a consequence, phases appear at tree level only in the soft supersymmetry breaking matrices. Using a U(2) flavor model as an example we show that it is possible to generate radiatively the first and second generation of quark masses and mixings as well as the CKM CP phase. The one-loop supersymmetric contributions to EDMs are automatically zero since all the relevant parameters in the lagrangian are flavor conserving and as a consequence real. The size of the flavor and CP mixing in the susy breaking sector is mostly determined by the fermion mass ratios and CKM elements. We calculate the contributions to epsilon, epsilon^{prime} and to the CP asymmetries in the B decays to psi Ks, phi Ks, eta^{\prime} Ks and Xs gamma. We analyze a case study with maximal predictivity in the fermion sector. For this worst case scenario the measurements of Delta mK, Delta mB and epsilon constrain the model requiring extremely heavy squark spectra.Comment: 21 pages, RevTex
    • …
    corecore