2,650 research outputs found

    Touch attention Bayesian models for robotic active haptic exploration of heterogeneous surfaces

    Get PDF
    This work contributes to the development of active haptic exploration strategies of surfaces using robotic hands in environments with an unknown structure. The architecture of the proposed approach consists two main Bayesian models, implementing the touch attention mechanisms of the system. The model πper perceives and discriminates different categories of materials (haptic stimulus) integrating compliance and texture features extracted from haptic sensory data. The model πtar actively infers the next region of the workspace that should be explored by the robotic system, integrating the task information, the permanently updated saliency and uncertainty maps extracted from the perceived haptic stimulus map, as well as, inhibition-of-return mechanisms. The experimental results demonstrate that the Bayesian model πper can be used to discriminate 10 different classes of materials with an average recognition rate higher than 90%. The generalization capability of the proposed models was demonstrated experimentally. The ATLAS robot, in the simulation, was able to perform the following of a discontinuity between two regions made of different materials with a divergence smaller than 1cm (30 trials). The tests were performed in scenarios with 3 different configurations of the discontinuity. The Bayesian models have demonstrated the capability to manage the uncertainty about the structure of the surfaces and sensory noise to make correct motor decisions from haptic percepts

    A Bayesian hierarchy for robust gaze estimation in human–robot interaction

    Get PDF
    In this text, we present a probabilistic solution for robust gaze estimation in the context of human–robot interaction. Gaze estimation, in the sense of continuously assessing gaze direction of an interlocutor so as to determine his/her focus of visual attention, is important in several important computer vision applications, such as the development of non-intrusive gaze-tracking equipment for psychophysical experiments in neuroscience, specialised telecommunication devices, video surveillance, human–computer interfaces (HCI) and artificial cognitive systems for human–robot interaction (HRI), our application of interest. We have developed a robust solution based on a probabilistic approach that inherently deals with the uncertainty of sensor models, but also and in particular with uncertainty arising from distance, incomplete data and scene dynamics. This solution comprises a hierarchical formulation in the form of a mixture model that loosely follows how geometrical cues provided by facial features are believed to be used by the human perceptual system for gaze estimation. A quantitative analysis of the proposed framework's performance was undertaken through a thorough set of experimental sessions. Results show that the framework performs according to the difficult requirements of HRI applications, namely by exhibiting correctness, robustness and adaptiveness

    Imaging 3D seismic velocity along the seismogenic zone of Algarve region (southern Portugal)

    Get PDF
    The present seismic tomographic study is focused around Algarve region, in South of Portugal. To locate the seismic events and find the local velocity structure of epicentral area, the P and S arrival times at 38 stations are used. The data used in this study were obtained during the Algarve campaign which worked from January/2006 to July/2007. The preliminary estimate of origin times and hypocentral coordinates are determined by the Hy- poinverse program. Linearized inversion procedure was applied to comprise the following two steps: 1) finding the minimum 1D velocity model using Velest and 2) simultaneous relocation of hypocenters and determination of local velocity structure. The velocity model we have reached is a 10 layer model which gave the lowest RMS, after several runnings of eight different velocity models that we used “a priori”. The model parameterization assumes a continuous velocity field between 4.5 km/s and 7.0 km/s until 30 km depth. The earth structure is represented in 3D by velocity at discrete points, and velocity at any intervening point is determined by linear interpolation among the surrounding eight grid points. A preliminary analysis of the resolution capabilities of the dataset, based on the Derivative Weight Sum (DWS) distribution, shows that the velocity structure is better resolved in the West part of the region between the surface to15 km. The resulting tomographic image has a prominent low-velocity anomaly that shows a maximum decrease in P-wave velocity in the first 12 kms in the studied region. We also identified the occurrence of local seismic events of reduced magnitude not catalogued, in the neighbourhood of Almodôvar (low Alentejo). The spatial distribution of epicentres defines a NE-SW direction that coincides with the strike of the mapped geological faults of the region and issued from photo-interpretation. Is still expectable to refine the seismicity of the region of Almodôvar and establish more rigorously its role in the seismotectonic picture of the region. This work is expected to produce a more detailed knowledge of the structure of the crust over the region of Algarve, being able to identify seismogenic zones, potentially generators of significant seismic events and also the identification of zones of active faults

    Integration of touch attention mechanisms to improve the robotic haptic exploration of surfaces

    Get PDF
    This text presents the integration of touch attention mechanisms to improve the efficiency of the action-perception loop, typically involved in active haptic exploration tasks of surfaces by robotic hands. The progressive inference of regions of the workspace that should be probed by the robotic system uses information related with haptic saliency extracted from the perceived haptic stimulus map (exploitation) and a “curiosity”-inducing prioritisation based on the reconstruction's inherent uncertainty and inhibition-of-return mechanisms (exploration), modulated by top-down influences stemming from current task objectives, updated at each exploration iteration. This work also extends the scope of the top-down modulation of information presented in a previous work, by integrating in the decision process the influence of shape cues of the current exploration path. The Bayesian framework proposed in this work was tested in a simulation environment. A scenario made of three different materials was explored autonomously by a robotic system. The experimental results show that the system was able to perform three different haptic discontinuity following tasks with a good structural accuracy, demonstrating the selectivity and generalization capability of the attention mechanisms. These experiments confirmed the fundamental contribution of the haptic saliency cues to the success and accuracy of the execution of the tasks
    • …
    corecore