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Abstract

This text presents the integration of touch attention mechanisms to improve the efficiency of the action-perception loop, typically

involved in active haptic exploration tasks of surfaces by robotic hands. The progressive inference of regions of the workspace that

should be probed by the robotic system uses information related with haptic saliency extracted from the perceived haptic stimulus

map (exploitation) and a “curiosity”-inducing prioritisation based on the reconstruction’s inherent uncertainty and inhibition-of-

return mechanisms (exploration), modulated by top-down influences stemming from current task objectives, updated at each ex-

ploration iteration. This work also extends the scope of the top-down modulation of information presented in a previous work, by

integrating in the decision process the influence of shape cues of the current exploration path. The Bayesian framework proposed

in this work was tested in a simulation environment. A scenario made of three different materials was explored autonomously by

a robotic system. The experimental results show that the system was able to perform three different haptic discontinuity follow-

ing tasks with a good structural accuracy, demonstrating the selectivity and generalization capability of the attention mechanisms.

These experiments confirmed the fundamental contribution of the haptic saliency cues to the success and accuracy of the execution

of the tasks.

Keywords: touch attention; artificial perception; Bayesian modelling; path planning; haptic exploration; probabilistic grid maps;

1. Introduction

In an attempt to capitalise on the same advantages that hav-

ing hands benefit human beings, researchers have recently put

a lot of effort into the development of dexterous robotic hands,

due to the mechanical (high number of degrees-of-freedom) and

sensory (tactile, force, torque, heat) capabilities that they pro-

vide. These devices allow robotic platforms to perform precise

manipulation of objects (reaching, grasping, transportation, in-

hand reorientation) [1], as well as haptic exploration of surfaces

using different patterns of movements (lateral motion, press-

and-release, static contact), thereby promoting the extraction

and integration of different haptic properties (contours, texture,

compliance, temperature) of the materials these surfaces are

composed of [2].

The contributions presented in this work are related with the

robotic haptic exploration of surfaces, following three essential

assumptions: (1) no other type of sensors are used besides hap-

tics (i.e. exploration is “blind”); (2) exploration paths are not

predefined; (3) the surface geometry is unknown to the robot.

The objectives of the exploration tasks concern haptic discon-

tinuity/contour following. Haptic discontinuities are defined

by the transition/border regions between surfaces with different

haptic properties. During haptic exploration, the interaction of
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Figure 1: a) Results from a previous work [3], demonstrating a haptic disconti-

nuity following task: straight line geometry. In this work, the haptic exploration

tasks are more challenging: three materials and discontinuities with other ge-

ometries than straight lines. b) Illustration of a 2D isometric grid partitioning a

real world workspace area. Each cell v has a dimension ε and is described by

position (x,y) expressed in {W }.
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the robotic platform with the probed surface provides multiple

simultaneous streams of data over its geometry and the proper-

ties of its composing materials relayed by an ensemble of haptic

sensors. This data is potentially uncertain due to sensor noise

and the unknown nature of the surface.

To tackle these challenges, we propose a Bayesian frame-

work to implement autonomous haptic exploration of surfaces

that implements an action-perception loop architecture. The

Bayesian formalism provides a principled way of implement-

ing the integration of the multimodal sensory data supplied by

the haptics ensemble while properly dealing with their inher-

ent uncertainty. The proposed action-perception loop architec-

ture integrates touch attention mechanisms (i.e. stimulus-driven

processes modulated by task-relevant top-down influences) to

optimise the exploration strategy. This in turn promotes adap-

tive behaviour due to the exploration and exploitation traits of

such mechanisms.

The haptic exploration of surfaces plays a fundamental role

in reduced visibility scenarios (i.e.: underwater robotic manipu-

lation, smoky and foggy disaster environments, partial or com-

plete occlusion of elements in the scenario). Although this work

only addresses the implementation of haptic exploration strate-

gies, the proposed Bayesian framework allows the integration

of additional sensory sources such as vision (depth, color) and

laser to infer the robotic exploration path. The approach pro-

posed in this work can be used to complement methods already

available to explore surfaces using exclusively non-haptic sen-

sory inputs [4] [5] [6].

The structure of the manuscript and an overview of the

Bayesian models proposed in this work are presented in section

1.1.

1.1. Problem formulation and approach overview

In the application scenarios used in this work, the explo-

ration task is performed on top of a table – a workspace defined

by a planar surface – and using a generic robotic system with

manipulation capability. The internal structure and configura-

tion of the workspace is unknown a priori to the robotic sys-

tem. The solution to the haptic exploration task is described in

two-dimensional Cartesian space, progressively unfolding a se-

quence of regions of the workspace to be probed by the robotic

platform during task execution.

As in previous reported work, the 2D-Cartesian space is par-

titioned using a planar isometric 2D grid (square cells), as rep-

resented in Fig. 1 b). Each cell vk has a side of length ε and is

described by a 2D Cartesian location (x,y) expressed in the in-

ertial world referential {W }. These tesselations of space have

been used extensively in robotics as inference grids in many

applications [9].

The methods presented follow the principles and architec-

ture of the human somatosensory processing pipeline and hu-

man cognition. A conceptual overview of our solution is pre-

sented in Fig. 2; the corresponding detailed diagram is given in

Fig. 3, including a representation of data flow. Haptic sensory

inputs are acquired during the local interaction of the robotic

exploratory elements with the environment at region vk. Haptic
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Figure 2: Conceptual representation of the action-perception loop [7] involved

in the haptic exploration of surfaces [8]. In this work, the objectives of the task

and corresponding solution is represented in two levels: symbolic and mid-

level.

features such as texture, compliance, temperature are extracted

from the haptic sensory inputs. These features are integrated

and used to discriminate the different classes of materials in

the workspace. These processes are modelled by the Bayesian

model πper presented in section 3.

Next in the sensory processing pipeline, the robotic system

uses the updated perceptual representation of the workspace to

infer the next region that should be explored. The mechanisms

involved in this process are implemented by the Bayesian model

πtar and described in section 5. Touch attention is modelled by

integrating the following:

• Stimulus-driven processes – concurrent mechanisms that

promote both exploitation behaviour concerning percep-

tual representations of stimuli in the form of haptic saliency

and shape cues (determined by the Bayesian model πob j,

section 4), and exploration behaviours fuelled by spatial

distribution of perceptual uncertainty and also inhibition-

of-return mechanisms.

• Goal-directed modulation – mechanisms that influence

the weights of stimulus-driven processes through

top-down influences informed by current task objectives.

The experimental setup used in this work is described in

section 6. The impact of the integration of the touch attention

mechanisms in the action-perception loop and generalization

capability of the exploration strategies inferred from the pro-

posed Bayesian models are tested in simulation environment,

section 6. The main conclusions of this work and formulation

of the main guidelines for future developments of this approach

are presented in section 7.

2



Robotic Platform

Hardware Components Sensing Apparatus Actuation Apparatus

Perception
and Cognitive
Components
- Path Planning -

Main Block
Haptic Perception 
for Action

Action
for Haptic Perception

Progressive determination of the exploration path
Question:  P(Ok|t, s(v,k), u(v,k), i(v,k), Rk, πtar)

Task selection

(Physical Interaction) (v,k)(Physical Stimulus) (v,k)

Memory of the System

Local Perception of Haptic Stimulus

πtar

πper

t

P(I(v,k)|Ok , πtar)
P(U(v,k)|Ok , πtar)

P(E(v,k)|M(v,k) ,πper)
P(C(v,k)|M(v,k) ,πper)

P(M(v,k)|e(v, k), c(v, k), πper)

Workspace / Environment

P(S(v,k)|Ok, T, πtar)
P(Rk|Ok, πtar)

P(Li
k|Rk, πobj)

P(Rk|lik, πobj)

Recognition of the shape of the
exploration path πobj

Chapter 5

Chapter 3

Chapter 4

ôk

Low-Level Control
and Signal Processing

h(v,k)

Physical Interaction Control
(eg: force, position)

ôk

Motor Commands

Haptic Sensory Signals Pre-Processing

e(v, k)      c(v, k)

Actuation and 
Sensing Feedback 

Figure 3: Detailed diagram of the architecture of the proposed system. The main contributions of this work are identified in the diagram as main block (local

perception of haptic stimulus, recognition of the shapes of discontinuities, progressive determination of the exploration path). The variables of the system are

summarised in table 1.

1.2. Path planning of the global haptic exploration strategy

The framework conceptually represented in Fig. 2 and de-

tailed in Fig. 3 implements a haptic exploration path planning

method, which infers a series of global via-points in the

workspace that should be probed by the robotic system.

This work does not address the low-level control loop in-

volved in physical interaction of the fingers with the surface

and the ability to move the fingers along the surface by keeping

contact. In other words, the low-level modelling and control of

local contact interaction (eg: force, impedance, position con-

trol) and processing of haptic sensory data are not discussed

by this work. These processes are implemented in Fig. 3 by

the module Low-Level Control and Signal Processing and in-

ner loop labelled Actuation and Sensing Feedback.

Our solution assumes that algorithms (dependent of specific

robotic device and sensing apparatus) implemented by other

works (eg: [10]) extract different haptic features and control

the local movements during the haptic exploration of a region

vk. The integration between these lower level control mod-

els (dashed boxes) and the global exploration path planning

method (bold boxes) proposed by this work is detailed in Fig. 3.

2. Related works

The robotic exploration of surfaces using haptic inputs has

been a research topic pursued for a long time, with seminal

works by [23], [24], [25] and [26].

Table 1: Summary of the relevant variables of this work.

Variable Description Domain
v Cell of the workspace grid. R

2

k Time / exploration iteration. N0

Rk Category of the structure of the dis-
continuity.

{”Shape1”,”Shape2”}

templatei Set of points defining the template of
each category of structure.

R
2

Li
k Matching error between the explo-

ration path and templatei.
[0,1]

M(v,k) Material category of v {Material1, . . . ,Material10}
E(v,k) Texture characterization of v. R

C(v,k) Compliance characterization of v. R

h(v,k) Raw haptic sensing data acquired on
v.

R
n ∗

Ok Next workspace region to be ex-
plored.

v

I(v,k) Inhibition level for cell v. [0,1]
U(v,k) Uncertainty level for cell v. [0,1]
S(v,k) Saliency of the perceived haptic stim-

ulus in region v.
[0,1]

T Objective of the haptic exploration
task.

{T1,T2,T3}
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Table 2: Comparison between the contributions of this work and the related works

Study Apparatus a Local Haptic Perception Global Exploration of the workspace
Approach b Features c Approach d Task e Strategy f Workspace g

This Work HS P T, CO P M:E, F:E AE GD:2D

[11] HS D C - - - -

[12] HS D T - - - -

[10] HS P CO, T, TC - - - -

[13] HS P T - - - -

[14] HS D T - - - -

[15] HS P C - - - -

[16] HS P S - - - -

[17] HS D C, TC - - - -

[18] HS D CO D M:C PD CS:2D

[19] HS D RO P F:T PD -

[20] HS P C D F:C AE -

[21] HS, VS P TO P M:E AE GD:2D

[22] HS P RO D M:E, F:E AE GD:2D

[20] HS D CI, CR D F AE CS:3D
a HS- haptic sensing; VS- visual sensing.
b,d P- probabilistic; D- deterministic.
c T- texture; CO- compliance; C- curvature; TC- thermal conductivity; S- stickiness; RO- raw sensory output; CI- contact intensity; CR- contact orientation.
e M:E- mapping edge; M:C - mapping compliance; F- following; F:E- following edge; F:T- following texture; F:C: following curvature;
f AC- active exploration; PD- pre-defined exploration path.
g GD:2D - bi-dimensional grid; CS:2D- bi-dimensional Cartesian space points; CS:3D- tri-dimensional Cartesian space points;

A group of approaches described in the literature imple-

ments haptic exploration by attempting to achieve a single cate-

gorisation of surfaces or objects. The exploration is performed

locally in a specific region, considering that it is representa-

tive of the whole surface by assuming that the latter is either

homogeneous or uniform in terms of the haptic features under

analysis. The discrimination between the different classes of

surfaces is performed by extracting distinct but complementary

types of haptic features such as surface curvature [11], texture

[12] [10] [13] [14], compliance [15] [10], stickiness [16] and

thermal conductivity [10] [17] from the haptic sensory signals.

The formalisation of the descriptors of the haptic features de-

pends on the type of robotic platform and type of sensing appa-

ratus involved in the exploration task, specifically the modelling

of the contact interaction and the characteristics of the sensory

signals produced during that interaction. However, each type

of haptic feature is extracted using the same exploration move-

ment patterns across the different works.

The work presented in this manuscript contributes to this

group of approaches by introducing a Bayesian model that al-

lows the discrimination different categories of materials through

the integration of compliance and texture features. The formu-

lation of haptic features abstracts the contact interaction models

between the exploratory element and the surface.

A second group of approaches, while integrating sensing,

perception and local exploration mechanisms similarly to the

previous group, expands the exploration strategy to large and

heterogenous surfaces in the haptic feature domain under analy-

sis. The global perceptual map of the surface can be constructed

following different strategies. In many proposed solutions, the

global exploration path is fixed and defined a-priori. For exam-

ple, in [18], haptic exploration is performed using pre-defined

exploration paths to build a stiffness map of biological tissues.

As long as the perception of the haptic stimulus of the surface

occurs, it does not influence the exploration movement. In [19],

Braille symbols are explored and recognised by a robotic sys-

tem. The exploration speed is adjusted depending on the recog-

nition uncertainty, nevertheless the exploration path is also pre-

defined.

Although exploration strategies defined a-priori can be suc-

cessful when substantial information about the structure of the

environment is available, in most of the scenarios identified

considering the motivation behind this work, the structure of

the environment is initially unknown (partially or completely).

Thus, the exploration strategy should introduce an active be-

haviour to progressively integrate and analyse the local percep-

tual representation of the environment (perception for action)

and estimate what should be the next global region to explore

and perceive (action for perception), as proposed in [27]. Ac-

tive exploration of a scene represented by a occupancy grid was

proposed by [21]. An initial estimation of the scene structure is

made using stereovision data and projected in a 2D occupancy

grid. The exploration strategy is dependent of that initial rep-

resentation and haptic inputs (lateral contact/non-contact) are

used to confirm and update the occupancy grid of the map.

In other works, the active exploration task is started with-

out any knowledge about scene structure. For example, [22]

proposes a method to perform active contour following of ob-

jects by performing tap movements using a robotic fingertip

equipped with a tactile array. The reaction of the system is for-

mulated based on the contact profile between the haptic stimu-

lus and the tactile sensing array and specific deterministic rules

defined beforehand by the human operator. [20] presents a

generic formulation of a control framework for different types

of tasks that require tactile servoing (eg: tracking a touched ob-

ject, tactile object active exploration). Different behaviours are

obtained by adjusting a few matrix parameters and selecting the

corresponding haptic primitives extracted from a tactile array.

This work adds to the contributions of this class of

approaches by proposing a formulation of Bayesian models im-

plementing touch attention mechanisms involved in the active

haptic exploration of unknown surfaces by generic robotic hands

and sensory apparatus. Once this work assumes that the workspace

is unknown a-priori to the system (blind exploration), the ex-
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ploration path is adapted actively by the touch attention mech-

anisms, as long as the exploration progresses. The definition

of the architecture of the Bayesian models follows the princi-

ples on how humans manage uncertainty to make motor deci-

sions from percepts [7], and extends the architecture proposed

in a previous work [3]. The work presented in this manuscript

expands the top-down modulation of information, by integrat-

ing an additional Bayesian model in the decision process, rep-

resenting the influence of the shape of the current exploration

path (detailed in section 4). In [3] the experimental results were

focused on testing extensively the capability of the system to

discriminate different type of materials. In the current work, a

completely new set of experiments is designed to test the selec-

tivity (different types of discontinuities) and robustness (differ-

ent path shapes) of the touch attention mechanisms during three

haptic discontinuity following tasks. The new experimental de-

sign was also used to evaluate the contributions of the different

types of cues modelled by the Bayesian models to the perfor-

mance of the robotic system.

3. Local perception of haptic stimulus map

3.1. Random variables of the model
The type of material describing workspace region v is rep-

resented by the discrete random variable M(v,k), defined as fol-

lows:

M(v,k) ∈ {Material1, . . . ,Material10}. (1)

During local exploration of region v of the workspace at

time iteration step k, the robotic system acquires haptic sensory

data represented by variable h(v,k). The categories of materi-

als are discriminated according to different properties of tex-

ture and compliance, hence haptic sensory inputs h(v,k) are used

to determine the category of material describing the cell v of

the workspace. Haptic sensing measurements h(v,k) are trans-

formed using function g into a compliance characterisation of

the explored surface, and using function f into a texture charac-

terization of the surface. This work considers the same operator

functions f and g of the work [10]. The texture and compliance

characteristics of the region v of the workspace are described

by the continuous random variables, E(v,k) ≡“Texture charac-

terization of v”, and C(v,k) ≡“Compliance characterization of

v”, respectively, according to the following expressions:

E(v,k) = f (h(v,k)), E(v,k) ∈ R,

C(v,k) = g(h(v,k)), C(v,k) ∈ R. (2)

3.2. Inference of the haptic stimulus category
The Bayesian model πper allowing the estimation of surface

material given haptic sensory inputs (Fig. 4) was extensively

tested in previous work [3], in which it was used to discriminate

between different classes of materials (the same set of 10 dif-

ferent classes used in the work presented in [10], more specifi-

cally acrylic, brick, copper, damp sponge, feather, rough foam,

M(v , k)E(v,k) C(v,k)
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Relevant variables:

E(v,k),C(v,k),M(v,k)

Decomposition:

P(E(v,k),C(v,k),M(v,k)|πper) =(
P(E(v,k)|M(v,k),πper).P(C(v,k)|M(v,k),πper).

.P(M(v,k)|πper)

)

Parametric forms:

P(E(v,k)|M(v,k),πper)≡ N (μE(M),σE(M))

P(C(v,k)|M(v,k),πper)≡ N (μC(M),σC(M))

For k = 0:

Map initialization.
P(M(v,0)|πper)≡ Uniform
For k > 0:

Map update using previous state information.
P(M(v,k)|πper) =

P(M(v,k−1)|e(v,k−1),c(v,k−1),πper)

Identification:

μE(M),σE(M),μC(M),σC(M)

- Constants defined during the learning stage.
Question:

P(M(v,k|e(v,k),c(v,k),πper)

(b)

Figure 4: Bayesian model πper:”Local perception of haptic stimulus”. a)

Graphical representation. b) Description of the Bayesian program.

plush toy, silicone, soft foam, wood) with an average recog-

nition rate higher than 90%, even when sensory samples were

corrupted with Gaussian white noise. These categories of mate-

rials are characterised by different properties of texture, compli-

ance and thermal conductivity that were extracted using BioTac
biomimetic tactile sensor raw data (contact intensity, vibration,

heat flow). In our work, we only consider texture and compli-

ance properties of the materials.

The conditional independence relations between random vari-

ables E(v,k),C(v,k),M(v,k) are expressed in Fig. 4 a). Based on

these assumptions, the joint probability distribution function

P(E(v,k),C(v,k),M(v,k)|πper) is decomposed as described in Fig. 4

b), with respective parametric forms.

At each time step, the probability distribution function

P(M(v,k)|e(v,k),c(v,k),πper) describing the probability of the sur-

face at v corresponding to each material category is inferred

using the observed data e(v,k),c(v,k) extracted from the samples

acquired by the sensory apparatus of the robotic system:
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- Material1
- Material2
- Material3
- Material4
- Material5

- - Material6
- - Material7
- - Material8
- - Material9
- - Material10

P(E(v,k) | M(v,k), per)

(a)

P(C(v,k) | M(v,k), per)

(b)

Figure 5: Representation of P(E(vi,k)|M(vi,k),πper) (a)) and

P(C(vi,k)|M(vi,k),πper) (b)) learned for 10 reference materials. Data ex-

tracted from [10].

P(M(v,k)|e(v,k),c(v,k),πper) =(
P(e(v,k)|M(v,k),πper).

P(c(v,k)|M(v,k),πper).P(M(v,k),πper)

)

∑
M(v,k)

(
P(e(v,k)|M(v,k),πper).

P(c(v,k)|M(v,k),πper).P(M(v,k),πper)

) (3)

3.3. Determination of P(E(v,k)|M(v,k),πper) and
P(C(v,k)|M(v,k),πper)

The parameters μE(M), σE(M), μC(M), σC(M) of the Gaus-

sian functions modelling the Normal probability distributions

P(E(v,k)|M(v,k),πper) and P(C(v,k)|M(v,k),πper) are estimated dur-

ing experimental learning sessions using a maximum-likelihood

procedure. As described in [10], during the learning period,

standard local exploration procedures are performed for each

of the n = 10 reference materials.

After the pre-determined number of standard local explo-

rations, the free parameters μE(M), σE(M), μC(M), σC(M)
of the Normal (N ) distributions are determined by calculat-

ing the averages μ and standard deviations σ of E and C for

each reference material. The resulting P(E(v,k)|M(v,k),πper) and

P(C(v,k)|M(v,k),πper) are represented in figures 5 a) and 5 b), ex-

tracting the data available from the manuscript of the work [10].

4. Recognition of the shape of the global exploration path

4.1. Random variables of the model

As the haptic exploration of the workspace progresses, the

exploration path is described by the set of regions of the two-

dimensional workspace grid probed by the robotic system. The

shape of the exploration path provides cues that can be recog-

nised by the haptic exploration framework.

The category of the shape of the exploration path is repre-

sented by discrete random variable Rk, defined as follows:

Rk ∈ {Shape1, . . . ,ShapeΘ}. (4)

Each class of shape described by discrete random variable

Rk is associated with a template, represented by a set of points

templatei,

∀i∈{1,...,Θ} 〈”Shapei”, templatei〉. (5)

This work assumes that the robotic system is able to rec-

ognize Θ = 2 categories of shapes: a rectangle and a triangle,

respectively.

The sequence of regions of the workspace explored by the

robotic system until time step (k − 1) is described by the set

of workspace locations (ô0, ô1, . . . , ôk−1) (section 5). The cat-

egorisation process consists of establishing a match between

the points (ô0, ô1, . . . , ôk−1) explored by the robotic system until

time step (k−1) and each of the templates templatei, represen-

tative of each category of structure of discontinuity. The nor-

malised matching error between each template and the current

exploration path is described by the continuous random variable

Li, defined as follows:

[Li,ϒi] = fICP((ô0, ô1, . . . , ôk−1), templatei), Li ∈ [0,1] (6)

The matching between the two sets of points (ô0, ô1, . . . , ôk−1)
and templatei is determined using the Iterative Closest Point
(ICP) method [28], as described in equation 6.

Besides matching error Li, the ICP function fICP returns

the estimation of the geometrical transformation ϒi between the

two sets of points. This transformation can be used to determine

a new set of points template
′
i which results from the registration

of the templatei points in the structure described by the set of

points (ô0, ô1, . . . , ôk−1).
This relation can be described by the geometrical transfor-

mation represented in the following equation,

template
′
i = ϒi.templatei, (7)

as used in section 5.
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Relevant variables:
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Δ
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Decomposition:
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k , . . . ,L

Δ
k |πob j) =

P(L1
k |Rk,πob j). . . . .P(LΔ

k |Rk,πob j).P(Rk|πob j)

Parametric forms:

P(Li
k|Rk,πob j)≡ B(αLi ,βLi)

P(Rk|πob j)≡ Uniform
Identification:

αLi ,βLi

−Constants defined empirically.
Question:

P(Rk|l1
k , . . . , l

Δ
k ,πob j)

(b)

Figure 6: Bayesian model πob j:”Recognition of the shapes of discontinuities.”.

a) Graphical representation. b) Description of the Bayesian program.

4.2. Inference of category of shape
The graphical representation of Bayesian model πob j pre-

sented in Fig. 6 a) expresses the conditional independence re-

lations between random variables L1
k , . . . ,L

Θ
k ,Rk. According to

these relations, the joint probability distribution function

P(L1
k , . . . ,L

Θ
k ,Rk|πob j) can be factored as presented in Fig. 6

b).The probability distribution function followed by each of

those factors is also presented in Fig. 6 b).

At each time step, the probability distribution function

P(Rk|l1
k , . . . , l

Θ
k ,πob j) is inferred using the Bayesian program of

Fig. 6 through the following equation:

P(Rk|l1
k , . . . , l

Θ
k ,πob j) =

P(l1
k |Rk,πob j). . . . .P(lΘ

k |Rk,πob j).P(Rk|πob j)

∑
Rk

P(l1
k |Rk,πob j) . . .P(lΘ

k |Rk,πob j)P(Rk|πob j)
(8)

4.3. Determination of P(li
k|Rk,πob j)

The probability distribution functions P(li
k|Rk,πob j) are de-

scribed by beta probability distribution functions BL with the

constant parameters αL = 1.0 and βL = 4.5. All Θ probability

distribution functions are assumed identical.

The typical profile of the probability distribution function

P(li
k|Rk,πob j) is represented in Fig. 8 b). The profile proposed

for P(li
k|Rk,πob j) attributes higher probabilities to lower lev-

els of normalized matching errors li
k and lower probabilities to

higher values of li
k. This promotes the selection of categories

of the structure Rk that have a template similar to the current

exploration path (ô0, ô1, . . . , ôk−1).
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Relevant variables:

Ok,T,S(v,k),U(v,k), I(v,k)
Decomposition:

P(Ok,T,S(v,k),U(v,k), I(v,k)|πtar) =(
P(Ok|πtar).P(T |πtar).P(I(v,k)|Ok,πtar).

.P(U(v,k)|Ok,πtar).P(S(v,k)|Ok,T,πtar)

)

Parametric forms:

P(Ok|πtar)≡ Uniform
P(T |πtar)≡ Uniform
P(I(v,k)|Ok,πtar)≡ B(αI ,βI)

P(U(v,k)|Ok,πtar)≡ B(αU ,βU )

P(S(v,k)|Ok,T,πtar)≡ B(αS,βS)

Identification:

αI ,βI ,αU ,βU ,αS,βS

−Constants defined empirically.
Question:

P(Ok|t,s(v,k),u(v,k), i(v,k),πtar)

Decision criteria: MAP - Maximum a posteriori.
ôk = argmaxok

P(Ok|t,s(v,k),u(v,k), i(v,k),πtar)

(b)

Figure 7: Bayesianl model πtar:”Selection of the next exploration target”. a)

Graphical representation. b) Description of the Bayesian program.

5. Integration of touch attention mechanisms in the infer-
ence of the global exploration path

5.1. Random variables of the model

After the local exploration of the region v of the workspace

is concluded, the perceptual representation of the workspace is

updated with the sensory measurements acquired at v (update

mechanisms presented in section 3), and the robotic system has

to decide which region v of the workspace grid should be ex-

plored next (path planning of global exploration strategy).

The next exploration target is represented by the discrete

random variable Ok, defined as

Ok ∈ {v1,v2,v3, . . . ,vθ}, (9)

in which θ is the total number of cells in the grid representation

of the workspace, and vi is a compact representation of the cell

identifier.

Robotic platforms have been endowed with attentional mech-

anisms implemented in different sensory domains in order to
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deal with sensory overload, prioritisation and dynamic environ-

ments [29].

The sequence of workspace regions (ô0, ô1, . . . , ôk−1) pre-

viously explored by robotic system, can provide cues about the

shape of the discontinuity that is being followed and indirectly

influence the estimation of ôk. The cues are provided by match-

ing the current structure of the exploration path, with represen-

tations of typical shapes stored in the memory of the robotic

system. As presented in section 5.3, unexplored regions of the

workspace that are coincident with the structure of the shape

templates will be more likely to be explored.

The selection of Ok is also conditioned by inhibition-of-

return mechanisms. The inhibition level imposed this mech-

anism to the overall attention process is implemented by the

continuous random variable I(v,k) =“Inhibition level for cell v”

as follows:

I(v,k) = 1−Θdα−1(1−d)1−β , I(v,k) ∈ [0,1] (10)

Due to the characteristics of the haptic exploration proce-

dures presented in section 1, at time step k+ 1 the inhibition-

of-return process promotes the exploration of regions of the

workspace different from the current position of the end-effector

of the robotic system (ôk−1), therefore avoiding deadlocks. How-

ever, simultaneously, the inhibition-of-return process inhibits

the exploration of regions too distant from ôk−1, to avoid breaks

during the discontinuity following task. The inhibition lev-

els I(v,k) for each cell v are defined in Eq. (10), considering

α = 1.01 and β = 9 (corresponding plot presented in Fig. 8 a)).

Parameter d is given by d = dk/dmax, where dk expresses the

Euclidean distance between ok and ôk−1, and dmax is a constant

representing the maximum possible distance between ok and

ôk−1 for the workspace dimensions. Θ is a normalisation con-

stant. The values of I(v,k)(d) range from 0 to 1, with I(v,k) = 0

indicating that the inhibition-of-return mechanism applies no

inhibition to cell v, and I(v,k) = 1 signalling full inhibition of

cell v.

The selection of the region Ok of the workspace is also de-

pendent on mechanisms that prevent returning to regions al-

ready explored and perceived with low uncertainty. In a nut-

shell, these mechanisms are formulated to promote the “cu-

riosity”, and are represented by the continuous random variable

U(v,k) =”Uncertainty level for cell v”, described as

U(v,k) =
H (M(v,k))

max(H (M(v,k)))
, U(v,k) ∈ [0,1], (11)

in which the operator H determines the information entropy

[30] of the discrete random variable M(v,k).

Another factor conditioning the determination of Ok is the

saliency of the haptic stimulus for region v as comparing to

its surroundings. Besides depending on the perceived haptic

stimulus M(v,k) map, the formulation of the saliency of haptic

stimuli is also modulated by the current objectives of the ex-

ploration task. The objectives of the task being executed by the

I(v,k)(d)

d

(a)

P(I(v,k) | Ok , πtar)
P(U(v,k) | Ok , πtar)
P(R(v,k) | Ok , T, πtar)

P(Li
k | Rk , πobj)

(b)

Figure 8: Graphical representation of: a) I(v,k). b) P(I(v,k)|Ok,πtar),

P(U(v,k)|Ok,πtar), P(S(v,k)|Ok,T,πtar), P(li
k|Rk,πob j).

robotic platform are represented by the discrete random vari-

able T = ”Task objective.”, given that T ∈ {T1, . . . ,TΦ}. During

an experimental run the value of T = t is considered constant

throughout. Φ expresses the total number of different tasks that

can be executed by the robotic platform.

Based on these considerations, the saliency of the haptic

stimulus at v is denoted by continuous random variable S(v,k),
and is dependent on the class of tasks T =”Search and follow
of discontinuities between regions of surfaces with Materiala
and Materialb.”. S(v,k) is related by a soft evidence relation

with the perceived haptic stimulus M(v,k) characterisation of the

workspace (detailed description in [3]) given by

S(v,k) =
max(|sx|, |sy|, |sz|)

snorm
, S(v,k) ∈ [0,1] (12)

The parameters sx = Gsobelx(d), sy = Gsobely(d) and sz =
Gsobelz(d) are determined using a 3×3 edge detector Gsobel (3×
3 kernel around v) following an approach described in [3] [31].

High values of S(v,k) correspond to regions around v expressing

a haptic discontinuity between Materiala and Materialb.
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5.2. Inference of the next exploration target

Based on the conditional independence relations between

random variables Ok, I(v,k), U(v,k), Rk S(v,k), T , presented in

Fig. 7 a), the joint probability distribution function

P(Ok,T,S(v,k),U(v,k), I(v,k),Rk|πtar) for this model πtar, is decom-

posed as summarised in Fig. 7 b), including parametric forms

corresponding to each factor. The final estimate for the next

exploration target ôk is given using a Maximum a Posteriori
(MAP) decision rule, given a specific task T = t, as follows

ôk = argmax
ok

P(Ok|t,s(v,k), i(v,k),u(v,k),Rk,πtar)⇔

ôk = argmax
ok

∑
Rk

⎛
⎝P(t|πtar).P(i(v,k)|Ok,πtar).P(Ok|πtar).

P(s(v,k)|Ok, t,πtar).P(u(v,k)|Ok,πtar).
P(Rk|Ok,πtar)

⎞
⎠
(13)

The determination of the probability distribution functions

P(S(v,k)|Ok,T,πtar), P(I(v,k)|Ok,πtar),
P(U(v,k)|Ok,πtar), P(Rk|Ok,πtar) involved in equation (13) is

described in detail next.

5.3. Determination of P(S(v,k)|Ok,T,πtar), P(I(v,k)|Ok,πtar),
P(U(v,k)|Ok,πtar), P(Rk|Ok,πtar)

As presented in Fig. 7 b), P(I(v,k)|Ok,πtar) is described by

a beta probability distribution function BI characterized by the

constants αI = 1 and βI = 2.5. The profile of the probability

distribution function P(I(v,k)|Ok,πtar) is represented in Fig. 8 b).

The selected profile for P(I(v,k)|Ok,πtar) attributes higher prob-

abilities to lower levels of I(v,k) and lower probabilities to higher

values of I(v,k) in order to promote the selection of regions of the

workspace with low values of inhibition level.

Following an analogous approach, P(U(v,k)|Ok,πtar) is de-

scribed by a beta probability distribution function BU (Fig. 8

b)) with the constant parameters αU = 4 and βU = 1.

P(U(v,k)|Ok,πtar) attributes higher probability values to regions

of the workspace perceived with higher uncertainty U(v,k), pro-

moting the curiosity of the system.

P(S(v,k)|Ok,T,πtar) is described by a beta probability dis-

tribution function BR defined by αR = 3 and βR = 1 (Fig. 8

b)), assigning higher probability values to workspace regions v
with higher values of saliency S(v,k), promoting the exploration

of regions of the workspace with relevant haptic stimulus for

the task under execution.

The probability distribution function P(Rk|Ok,πtar) is de-

fined as a Gaussian Mixture Model (GMM), as follows

P(Rk = ”Ob ject j”|Ok,πtar) = ∑
i∈template′j

wi.gi(Ok|μi,Σ) (14)

The Gaussians gi of the GMM are centred at the locations

μi of the workspace, with a covariance matrix Σ. Assuming a

2-D structure of the workspace, each Gaussian function gi is

defined as follows:

gi(Ok|μi,Σ) =
1

2π(3/2) | Σ | exp−
1
2 (Ok−μi)Σ−1(Ok−μi) . (15)

The centers μi of the Gaussians correspond to the points

belonging to the set Template
′
j, which are determined as pre-

sented in detail in section 4.

6. Experimental results

6.1. Computational simulation

The path planning method proposed by this work, support-

ing the global haptic exploration strategy, was simulated com-

putationally using MATLAB. The simulation scenario consists

on a planar 2D probabilistic grid representing the workspace

placed in front of a hypothetical robotic platform, as repre-

sented in figure 9. Three different materials were used: wood

(Material10, brown cells), silicone (Material8, blue cells) and

flush (Material7, green cells). The spatial distribution of the

three materials intends to simulate an hypothetical real world

scenario shown in figure 9. The workspace grid has the follow-

ing lower and upper dimensions respectively XW
l = 0m, XW

u =
0.30m, YW

l = 0m, YW
u = 0.60m. Each cell (square) has a side

dimension of ε = 0.01m. This work considers that all the re-

gions of the workspace are reachable by a robotic exploratory

element.

As detailed previously in section 1.2, this work does not ad-

dress the low-level (motor and sensing) control loop involved

in physical interaction between robotic fingers and surface. In

the computational simulation, the sensory features modelling

the haptic properties, texture (E(v,k)) and compliance (C(v,k)), of

materials Material7, Material8,

Material10, were extracted from a previous work [10], as de-

tailed in section 3.

6.2. Autonomous exploration of the workspace

This work assumes that at each time iteration step k of the

system illustrated in figure 3, an exploratory element of a robotic

hand probes a workspace region v. The sensory samples mod-

elling texture e(v,k) and compliance c(v,k) are artificially syn-

thesised from the respective probability distribution functions

P(E(v,k)|m(v,k),πper) and P(C(v,k)|m(v,k),πper), given the known

ground truth material m(v,k) for that region of the workspace, as

defined in figure 9. Following the architecture of the sensory

processing pipeline represented in figure 3, the sensory features

samples e(v,k), c(v,k) are integrated by the Bayesian models to

infer the next region (via point) of the workspace that should be

probed by a robotic system.

In this scenario, the exploratory element of the robotic sys-

tem initialized (k= 0) at random locations of the bi-dimensional

grid representing the workspace region. The full-list of initial-

ization locations for the 100 runs, is available online at http:

//www.rmartins.net/j2016a. Unlike in previous work [3],

these cells of the grid are not only located on a haptic dis-

continuity between the different materials of the scenario; they
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Scenario

a) b) c)

d) e) f)

a) b) c)

d) e) f)

a) b) c)

d) e) f)

a) b)

Figure 9: Scenario: a) Real world representation of the scenario. b) Schematic representation of configuration of the haptic stimulus placed in the workspace. The

materials wood (Material10), silicone (Material8) and flush (Material7) are represented in brown, blue, green respectively. c) Representation of the workspace in

the virtual environment. Tasks: a) Ground truth exploration path for the respective task. b)-f) Heat map of the exploration paths after 100 exploration runs with a

duration of 100 time iterations each. Different exploration behaviours by integrating different configurations of the Bayesian model πtar: b) full-model c) removing

shape cues Rk d) removing haptic saliency S(v,k) e) removing inhibition-of-return mechanisms I(v,k) f) removing uncertainty cues U(v,k).
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can be located on homogeneous regions. This provides a com-

pletely blind and unbiased initialization of the exploration task

for each exploration run.

During each exploration task, the workspace presented in

the Fig. 9 was explored during 100 runs (100 different initial

locations of the exploratory element). For each run, the explo-

ration procedures lasts 100 iterations (emulating time steps in

realistic conditions) k = 0 . . .99.

6.2.1. Exploration tasks
To evaluate the specificity and robustness of the Bayesian

models implementing the touch attention mechanisms proposed

in this work, the autonomous exploration of the workspace was

performed using three different tasks (T1, T2,T3). The objec-

tives are the following T1=”search and follow of discontinu-

ities between Material7 and remaining materials”; T2=”search

and follow of discontinuities between Material8 and remaining

materials”; T3=”search and follow of discontinuities between

Material10 and remaining materials”;

6.2.2. Performance metric
Although the internal structure and configuration of the hap-

tic stimulus disposed in the workspace is unknown a-priori to

the robotic system, the ground truth describing the target lo-

cations (grid cells) of the workspace that should be probed by

the robotic platform during task execution can be defined by a

human operator for benchmarking purposes, and is denoted as

B = {b1,b2,b3, . . . ,bl}, bi = (x,y)∈R
2. The set of workspace

regions actually probed by the robotic platform during task exe-

cution, on the other hand, is denoted as V = {v1,v2,v3, . . . ,vk},

vi = (x,y) ∈ R
2.

The performance of the autonomous execution of the task

by the robotic platform during an experimental run can be eval-

uated by the following error metric:

Γ =
l

∑
i=1

‖bi −vnearest‖, given that

∀vi∈V ∃vnearest : ‖bi −vnearest‖ ≤ ‖bi −vi‖, (16)

where ‖ . . .‖ represents the Euclidean distance operator. This

metric determines the total Euclidean distance between each

ground truth point and the nearest point belonging the explo-

ration path executed by the robotic platform. According to

this approach, better autonomous exploration strategies provide

lower values of Γ.

6.3. Discussion of the experimental results

The impact of the different components (discontinuity shape

cues, uncertainty, haptic saliency, inhibition-of-return) of the

Bayesian models implementing the touch attention mechanisms

was evaluated by comparing the exploration performance af-

ter discarding specific components of the Bayesian model πtar:

shape cues Rk, haptic saliency S(v,k), inhibition-of-return mech-

anisms I(v,k), uncertainty cues U(v,k). The influence of those

Time iteration  ( k )

Error  
( Г )

-- full-model
-- removing shape cues
-- removing haptic saliency cues
-- removing IOR cues
-- removing uncertainty cues

(a)

Time iteration  ( k )

Error  
( Г )

-- full-model
-- removing shape cues
-- removing haptic saliency cues
-- removing IOR cues
-- removing uncertainty cues

(b)

Time iteration  ( k )

Error  
( Г )

-- full-model
-- removing shape cues
-- removing haptic saliency cues
-- removing IOR cues
-- removing uncertainty cues

(c)

Figure 10: Temporal evolution (from k = 0 to k = 100 ) of mean value (aver-

age for the 100 runs; shaded colors represent SEM: standard error of mean )

of performance metric Γ by integrating different configurations of Bayesian

model πtar: full-model, removing shape cues Rk , removing haptic saliency

S(v,k), removing inhibition-of-return mechanisms I(v,k), removing uncertainty

cues U(v,k). a) Task T1. b) Task T2. c) Task T3.
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components was discarded by assuming that each of those ran-

dom variables is described by a uniform probability distribution

throughout the respective experimental runs.

Animated representations (time lapse) of the probability dis-

tribution functions during 100 time iterations involved in the

progressive inference by the Bayesian model πtar of the

workspace region that should be explored next, are available

online at http://www.rmartins.net/j2016a, and an exam-

ple is illustrated in Fig. 11.

The ground truth exploration paths for the objectives of the

exploration tasks T1, T2 and T3 are illustrated in Fig. 9 repre-

senting the borders of the Material7, Material8 and Material10

with the remaining materials in the workspace, respectively.

By performing a qualitative comparison between the ground

truth exploration paths and the heat maps resulting from the ex-

ploration behaviour inferred by the full Bayesian model πtar in

the Fig. 9, one finds that there is a high correspondence between

the spatial structure of the most explored regions and the spa-

tial structure of the ground truth exploration paths. The perfor-

mance metric presented in Fig. 10 also shows that the full model

always provides a good result. The touch attention mechanisms

implemented by the Bayesian model πtar have promoted the

exploration of regions corresponding to the discontinuities de-

scribed in the objectives of the tasks T1, T2, T3, ignoring other

types of haptic discontinuities.

The structural correspondence is higher for T1 and T2. This

better performance is justified by the better perceptual discrim-

ination capability of this system concerning Material7 and

Material8 relatively to Material10 (extensive study in [3]).

The analysis of the results of discarding the influence of

specific components of the Bayesian model πtar (Fig. 9), shows

that the degradation of performance of the exploration behaviour

is significant (Fig. 10) when the effect of the haptic saliency

S(v,k) is not considered. This causes the system to explore ran-

domly the workspace, not taking into consideration any infor-

mation about task relevance concerning the sensed haptic stim-

ulus.

By neutralising the integration of the information about the

uncertainty of the perceptual representation of the workspace

(Fig. 9), the robotic system fails to have an exploration strat-

egy that produces results similar to the ground truth. Although

the Bayesian model πtar implements inhibition-of-return mech-

anisms, their effect is transient, and therefore, after some time

elapses, the system tends to return to the same regions of the

workspace that have been explored previously and were per-

ceived with low uncertainty, thus providing a high saliency score

for the task being executed. The plot of the performance metric

Γ for those conditions, shows that the degradation of perfor-

mance of the exploration behaviour is considerable (Fig. 10).

By disabling the integration of the effects of the inhibition-

of-return mechanisms, exploration task execution performance

is less degraded. The plots of the Γ metric, presented in Fig. 10,

support this evidence by showing a performance of the system

at the same level as the full-model condition. The removal of

the transient effect of the inhibition-of-return mechanisms is

compensated by the integration of information of mechanisms

related with the uncertainty of the perceptual representation of

the workspace, which naturally correspond to less explored re-

gions, if all surfaces in the workspace remain static/rigid. These

regions tend to be avoided by the system, even without the influ-

ence of the inhibition-of-return mechanisms. The inhibition-of-

return mechanisms may play a more relevant role in more am-

biguous scenarios made of materials that the system can only

perceive with high uncertainty, even after considerable explo-

ration.

Discarding the effects provided by the integration of shape

cues (Fig. 9), does not have a strong influence in the perfor-

mance of the exploration behaviour of the system (Fig. 10).

The weak contribution of the shape cues of the discontinuity

to the improvement of the performance of the robotic system

was caused by the low number of shape primitives recognized

in this work (only two: rectangle and triangle) and by the high

number of points that were used to describe each of the tem-

plates (around 50 points).

7. Conclusions and future work

The integration of touch attention mechanisms in the ex-

ploration of surfaces by robotic hands proved to be effective to

search and follow haptic discontinuities based on noisy sensory

data describing unknown scenes. The updated perceptual rep-

resentation of the workspace, provided by the Bayesian model

πper, together with shape cues about the structure of the dis-

continuity being followed provided by the Bayesian model πob j
(extension of previous work [3]), are integrated by the Bayesian

model πtar to perform perceptual inference and drive the deci-

sion process to determine the region that should be explored in

the subsequent time step.

The Bayesian models were tested in a simulated scenario

including three different materials during three different hap-

tic exploration tasks. The results presented in section 6.2, have

demonstrated that the proposed approach provides the robotic

system with a useful framework to define and generalise ex-

ploration behaviours. As in [22], the system was able to deal

with severe changes in the slope of the discontinuities. In all

the tasks, the robotic system was able to follow haptic discon-

tinuities with progressive inversions in the slope of the discon-

tinuity, what clearly demonstrates the generalization capability

of the proposed approach. The emergent behaviour displayed

by the system offers an improvement on the results presented in

[22]. Testing the system with slope variations in discontinuities

other than right angles (90 degrees) was suggested by [22] as a

relevant future course of work.

The touch attention mechanisms proposed in this work also

showed high specificity. The robotic system followed the haptic

discontinuities between the materials of interest for each task,

ignoring other haptic discontinuities.

According with the results presented in section 6.2, the per-

formance of the robotic system during the haptic exploration

tasks is heavily dependent on the integration by the Bayesian

model πtar of information about the haptic saliency S(v,k) and

uncertainty U(v,k) of the perceptual representation of the

workspace. The formulation of the contributions of the inhibition-

of-return mechanisms I(v,k) and shape cues of the haptic discon-
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Figure 11: Representation of the P(I(v,k)|Ok,πtar), P(S(v,k)|Ok,T,πtar), P(U(v,k)|Ok,πtar), P(Rk|Ok,πtar), P(Ok|t,r(v,k), i(v,k),u(v,k),rk,πtar) probability distribution

functions and the exploration behaviour during the execution of the task T2 search and follow of discontinuities between Material8 and remaining materials, run 18.

Dark colors represent lower values. Light colors represent higher values. Animated versions of this type of representations for autonomous exploration tasks T1,T2

and T3, are available on-line www.rmartins.net/j2016a.
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tinuities Rk is going to be studied extensively in future work, in

order to improve and optimize the contributions of these com-

ponents of the Bayesian model to the performance of the robotic

system. In future developments of this work, elementary shape

primitives should be recognized by the system and alternatives

methods to ICP should be tested. This will allow the system

to recognize earlier the tendencies in the shape of the discon-

tinuity, matching the current exploration path with the shape

templates more robustly (noise, scale, orientation). The fu-

ture developments of this work will also investigate the imple-

mentation of the automatic computational optimization of the

parameters defining the profile of Beta distribution functions.

Currently, the selection of parameters is made empirically, test-

ing different sets of values and analysing the behaviour of the

system.

In this work, the space used to formulate the solution of

the global haptic exploration path planning consists in a 2D

grid. The next developments of the proposed approach will

study the extension of this space to a 3D grid. The operators

and functions defined in 2D space during the formulation of

the Bayesian models can be easily adjusted to 3D spaces (eg:

exploration path matching with shape temples; Sobel operators

involved in the formulation of haptic saliency; assignment of

inhibition levels).
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