5 research outputs found

    Effects Of Etching On Zircon Grains And Its Implications For The Fission Track Method

    No full text
    Studies of zircon grains using optical microscopy, micro-Raman spectroscopy, and scanning electron microscopy (SEM) have been carried out to characterize the surface of natural zircon as a function of etching time. According to the surface characteristics observed using an optical microscope after etching, the zircon grains were classified as: (i) homogeneous; (ii) anomalous, and (iii) hybrid. Micro-Raman results showed that, as etching time increases, the crystal lattice is slightly altered for homogeneous grains, it is completely damaged for anomalous grains, and it is altered in some areas for hybrid grains. The SEM (energy dispersive X-ray spectroscopy, EDS) results indicated that, independent of the grain types, where the crystallinity remains after etching, the chemical composition of zircon is approximately 33% SiO 2:65% ZrO 2 (standard natural zircon), and for areas where the grain does not have a crystalline structure, there are variations of ZrO 2 and, mainly, SiO 2. In addition, it is possible to observe a uniform surface density of fission tracks in grain areas where the determined crystal lattice and chemical composition are those of zircon. Regarding hybrid grains, we discuss whether the areas slightly altered by the chemical etching can be analyzed by the fission track method (FTM) or not. Results of zircon fission track and U-Pb dating show that hybrid and homogeneous grains can be used for dating, and not only homogeneous grains. More than 50 sedimentary samples from the Bauru Basin (southeast Brazil) were analyzed and show that only a small amount of grains are homogeneous (10%), questioning the validity of the rest of the grains for thermo-chronological evolution studies using zircon FTM dating. © 2012 Society for Applied Spectroscopy.665545551Gallagher, K., Brown, R., Johnson, C., Fission track analysis and its applications to geological problems (1998) Annual Review of Earth and Planetary Sciences, 26, pp. 519-572. , DOI 10.1146/annurev.earth.26.1.519Tagami, T., Zircon fission-track thermochronology and applications to fault studies (2005) Reviews in Mineralogy and Geochemistry, 58, pp. 95-122. , DOI 10.2138/rmg.2005.58.4Murakami, M., Kosler, J., Takagi, H., Tagami, T., Dating pseudotachylyte of the Asuke Shear Zone using zircon fission-track and U-Pb methods (2006) Tectonophysics, 424 (1-2), pp. 99-107. , DOI 10.1016/j.tecto.2006.06.006, PII S0040195106003362Yamada, R., Tagami, T., Nishimura, S., Ito, H., Annealing kinetics of fission tracks in zircon: An experimental study (1995) Chem. Geol. (Isot. Geosci. Sect.)., 122 (1-4), pp. 249-258Tagami, T., Carter, A., Hurford, A.J., Natural long-term annealing of the zircon fission-track system in Vienna Basin deep borehole samples: Constraints upon the partial annealing zone and closure temperature (1996) Chem. Geol. (Isot. Geosc. Sect. 3)., 130 (1-2), pp. 147-157Murakami, M., Yamada, K., Tagami, T., Short-term annealing characteristics of spontaneous fission tracks in zircon: A qualitative description (2006) Chem. Geol., (Isot. Geosc. Sect.)., 227 (3-4), pp. 214-222Guedes, S., Hadler N, J.C., Iunes, P.J., Oliveira, K.M.G., Moreira, P.A.F.P., Tello S, C.A., Kinetic model for the annealing of fission tracks in zircon (2005) Radiation Measurements, 40 (2-6), pp. 517-521. , DOI 10.1016/j.radmeas.2005.06.014, PII S1350448705001745, Proceedings of the 22nd International Conference on Nuclear Tracks in SoilsGarver, J.I., Etching zircon age standards for fission-track analysis (2003) Radiat. Meas., 37 (1), pp. 47-53Wagner, G., Haute Den P.Van, (1992) Fission-track Dating, 6, p. 285. , Kluwer Academic: NorwellBalan, E., Neuville, D.R., Trocellier, P., Fritsch, E., Muller, J.-P., Calas, G., Metamictization and chemical durability of detrital zircon (2001) American Mineralogist, 86 (9), pp. 1025-1033Palenik, C.S., Nasdala, L., Ewing, R.C., Radiation damage in zircon (2003) American Mineralogist, 88 (5), pp. 770-781Nasdala, L., Irmer, G., Wolf, D., The degree of metamictization in zircons: A Raman spectroscopic study (1991) Eur. J. Mineral., 7, pp. 471-478Nasdala, L., Wenzel, M., Vavra, G., Irmer, G., Wenzel, T., Kober, B., Metamictisation of natural zircon: Accumulaton versus thermal annealing of radioactivity-induced damage (2001) Contributions to Mineralogy and Petrology, 141 (2), pp. 125-144Zhang, M., Salje, E.K.H., Farnan, I., Graeme-Barber, A., Daniel, P., Ewing, R.C., Clark, A.M., Leroux, H., Metamictization of zircon: Raman spectroscopic study (2000) J. Phys.: Condens. Matter., 12 (8), pp. 1915-1925Lodzinski, M., Wrzalik, R., Sitarz, M., Micro-Raman spectroscopy studies of some accessory minerals from pegmatites of the Sowie Mts and Strzegom-Sobótka massif, Lower Silesia, Poland (2005) Journal of Molecular Structure, 744-747 (SPEC. ISSUE), pp. 1017-1026. , DOI 10.1016/j.molstruc.2004.12.015, PII S0022286004010075Holland, H.D., Gottfried, D., The effect of nuclear radiation on the structure of zircon (1955) Acta Cryst., 8 (6), pp. 291-300Wasilewski, P.J., Senftle, F.E., Vaz, J.E., Thorpe, A.N., Alexander, C.C., A study of the natural a-recoil damage in zircon by infrared spectra (1973) Radiat. Eff., 17 (3-4), pp. 191-199Salje, E.K.H., Chrosch, J., Ewing, R.C., Is "metamictization" of zircon a phase transition? (1999) Am. Miner., 84 (7-8), pp. 1107-1116Ríos, S., Salje, E.K.H., Zhang, M., Ewing, R.C., Amorphization in zircon: Evidence for direct impact damage (2000) R.C. J. Phys.: Cond. Matter., 12 (11), pp. 2401-2412Trachenko, K.T., Dove, M.T., Salje, E., Modelling the percolation-type transition in radiation damage (2000) J. Appl. Phys., 87 (11), pp. 7702-7707. , 2000Chakoumakos, B.C., Murakami, T., Lumpkin, G.R., Ewing, R.C., Alpha-decay-induced fracturing in zircon: The transition from the crystalline to the metamict state (1987) Science., 236 (4808), pp. 1556-1559McLaren, A.C., Fitz Gerald, J.D., Williams, I.S., The microstructure of zircon and its influence on the age determination from Pb/U isotopic ratios measured by ion microprobe (1994) Geochimica et Cosmochimica Acta, 58 (2), pp. 993-1005. , DOI 10.1016/0016-7037(94)90521-5Nasdala, L., Metamictization and U-Pb isotopic discordance in single zircons: A combined Raman microprobe and SHRIMP ion probe study (1998) Mineralogy and Petrology, 62 (1-2), pp. 1-27Geisler, T., Schleicher, H., Improved U-Th-total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon (2000) Chemical Geology, 163 (1-4), pp. 269-285. , DOI 10.1016/S0009-2541(99)00099-6, PII S0009254199000996Lumpkin, G.R., Alpha-decay damage and aqueous durability of actinide host phases in natural systems (2001) Journal of Nuclear Materials, 289 (1-2), pp. 136-166. , DOI 10.1016/S0022-3115(00)00693-0Araújo, V.D., Reyes-Peres, Y.A., Lima, R.O., Pelosi, A.P., Menezes, L., Córdoba, V.C., Lima-Filho, F.P., (2006) Geol. USP Sér. Cient., 6 (2), pp. 43-49. , PortugeuseDias, A.N.C., Tello Saenz, C.A., Constantino, C.J.L., Soares, C.J., Novaes, F.P., Balan, A.M.O.A., (2009) J. Raman Spectrosc., 40 (1), pp. 101-106Menneken, M., Nemchin, A.A., Geisler, T., Pidgeon, R.T., Wilde, S.A., Hadean diamonds in zircon from Jack Hills, Western Australia (2007) Nature, 448 (7156), pp. 917-920. , DOI 10.1038/nature06083, PII NATURE06083Passchier, C.W., Trouw, R.A.J., (2005) Micro-tectonics, p. 366. , New York: Springer, 2nd edBrandon, M.T., Roden-Tice, M.K., Carver, J.I., Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State (1998) Bulletin of the Geological Society of America, 110 (8), pp. 985-1009Geisler, T., Pidgeon, R.T., Van Bronswijk, W., Kurtz, R., Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions (2002) Chemical Geology, 191 (1-3), pp. 141-154. , DOI 10.1016/S0009-2541(02)00153-5, PII S0009254102001535Nasdala, L., Zhang, M., Kempe, U., Panczer, G., Gaft, M., Andrut, M., Ploetze, M., Spectroscopic methods applied to zircon (2003) Rev. Mineral. Geochem., 53 (1), pp. 427-46

    Projected length annealing of etched 152Sm^{152}Sm ion tracks in apatite

    No full text
    Slices of apatite (cut similar to 45 degrees apart from c-axis) were irradiated with Sm-152 ions and heated at different steps in order to investigate the thermal annealing property of tracks generated by these ions. The ions were impinged with 45 degrees and similar to 150 MeV at apatite surface. Samples were etched with diluted nitric acid. Results of annealed projected lengths are presented for isochronal 10, 100 and 1000 h thermal treatments (runs) for samples with and without pre-annealing preparation. For low annealing temperatures, a distinct behavior of these samples was observed: pre-annealed samples presented a faster annealing rate. At elevated temperatures, the behavior seems to be equal. A single activation energy model was fitted to data and the energy obtained is in agreement with literature. Finally, despite the different trend in comparison with annealing rates of confined fission tracks, extrapolation to geological timescales presents reasonable estimates, indicating small influence of surface effects and, in principle, the possibility to employ ion tracks as proxies for annealing kinetics. (C) 2012 Elsevier B.V. All rights reserved.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Zircon fission track and U–Pb dating methods applied to São Paulo and Taubaté Basins located in the southeast Brazil

    No full text
    Zircon samples from the Cenozoic São Paulo and Taubaté Basins and Mantiqueira Mountain Range (southeast Brazil) were concomitantly dated by zircon Fission Track Method (FTM) and in situ U–Pb dating method. While FTM detrital-zircon data are ideally used to provide low-temperature information, U–Pb single detrital grain ages record the time of zircon formation in igneous or high grade metamorphic environments. This methodology may be used to study the possible sources of the basins sediments. The results suggest that the São Paulo Basin is composed of sediments from just one source, the Mantiqueira Mountain Range. On the other hand, the Taubaté Basin presents further sediment sources besides the Mantiqueira Mountain Range

    Projected Length Annealing Of Etched 152sm Ion Tracks In Apatite

    No full text
    Slices of apatite (cut ∼45° apart from c-axis) were irradiated with 152Sm ions and heated at different steps in order to investigate the thermal annealing property of tracks generated by these ions. The ions were impinged with 45° and ∼150 MeV at apatite surface. Samples were etched with diluted nitric acid. Results of annealed projected lengths are presented for isochronal 10, 100 and 1000 h thermal treatments (runs) for samples with and without pre-annealing preparation. For low annealing temperatures, a distinct behavior of these samples was observed: pre-annealed samples presented a faster annealing rate. At elevated temperatures, the behavior seems to be equal. A single activation energy model was fitted to data and the energy obtained is in agreement with literature. Finally, despite the different trend in comparison with annealing rates of confined fission tracks, extrapolation to geological timescales presents reasonable estimates, indicating small influence of surface effects and, in principle, the possibility to employ ion tracks as proxies for annealing kinetics. © 2012 Elsevier B.V. All rights reserved.2884852Gallagher, K., Brown, R., Johnson, C., (1998) Annu. Rev. Earth Planet. Sci., 26, p. 519Gleadow, A.J.W., Belton, D.X., Kohn, B.P., (2002) Rev. Mineral. Geochem., 48, p. 579Wagner, G., Van Den Haute, P., (1992) Fission-Track Dating, , Kluwer Academic Publishers pp. 285Price, P.B., Walker, R., (1963) J. Geophys. Res., 68, p. 4847Wagner, G.A., (1988) Chem. Geol., 72, p. 145Wagner, G.A., Hejl, E., (1991) Chem. Geol., 87, p. 1Laslett, G.M., Galbraith, R.F., Green, P.F., (1994) Radiat. Meas., 23, p. 103Jonckheere, R., Van Den Haute, P., (2002) Radiat. Meas., 35, p. 29Gleadow, A.J.W., Duddy, I.R., Green, P.F., Lovering, J.F., (1986) Contrib. Mineral. Petrol., 94, p. 405Green, P.F., Duddy, I.R., Gleadow, A.J.W., Tingate, P.R., Laslett, G.M., (1986) Chem. Geol., 59, p. 237Carlson, W.D., Donelick, R.A., Ketcham, R.A., (1999) Am. Mineral., 84, p. 1213Barbarand, J., Carter, A., Wood, I., Hurford, T., (2003) Chem. Geol., 198, p. 107Tello, C.A., Palissari, R., Hadler, J.C., Iunes, P.J., Guedes, S., Curvo, E.A.C., Paulo, S.R., (2006) Am. Mineral., 91, p. 252Laslett, G.M., Green, P.F., Duddy, I.R., Gleadow, A.J.W., (1987) Chem. Geol., 65, p. 1Crowley, K.D., Cameron, M., Schaefer, R.L., (1991) Geochim. Cosmochim. Acta, 55, p. 1449Guedes, S., Hadler, N.J.C., Oliveira, K.M.G., Moreira, P.A.F.P., Iunes, P.J., Tello, S.C.A., (2006) Radiat. Meas., 41, p. 392Grivet, M., Rebetez, M., Chambaudet, A., Ben Ghouma, N., (1993) Nucl. Tracks Radiat. Meas., 22, p. 779Villa, F., Grivet, M., Rebetez, M., Dubois, C., Chambaudet, A., Chevarier, A., Blondiaux, G., Toulemonde, M., (2000) Nucl. Instr. Meth. B, 168, p. 72Li, W., Wang, L., Sun, K., Lang, M., Trautmann, C., Ewing, R.C., (2010) Phys. Rev. B, 82, p. 144109Afra, B., Lang, M., Rodriguez, M.D., Zhang, J., Giulian, R., Kirby, N., Ewing, R.C., Kluth, P., (2011) Phys. Rev. B, 83, p. 064116Li, W., Wang, L., Lang, M., Trautmann, C., Ewing, R.C., (2011) Earth Planet. Sci. Lett., 302, p. 227Afra, B., Rodriguez, M.D., Lang, M., Ewing, R.C., Kirby, N., Trautmann, C., Kluth, P., Nucl. Instr. Meth. B, , http://www.dx.doi.org/10.1016/j.nimb.2012.03.007, in pressSandhu, A.S., Singh, L., Ramola, R.C., Singh, S., Virk, H.S., (1990) Nucl. Instr. Meth. B, 46, p. 122Modgil, S.K., Virk, H.S., (1985) Nucl. Instr. Meth. B, 12, p. 212Larson, A.C., Von Dreele, R.B., (2004) Los Alamos Lab. Rep., LAUR, 86, p. 748Tian, P., Zhou, W., Liu, J., Shang, Y., Farrow, C.L., Juhas, P., Billinge, S.J.L., (2010), http://www.arXiv:1006.0435Fleet, M.E., Pan, Y., (1997) Am. Mineral., 82, p. 870Iunes, P.J., Hadler, N.J.C., Bigazzi, G., Tello, S.C.A., Guedes, O.S., Paulo, S.R., (2002) Chem. Geol., 187, p. 201Green, P.F., Duddy, I.R., Laslett, G.M., Hegarty, K.A., Gleadow, A.J.W., Lovering, J.F., (1989) Chem. Geol., 79, p. 155Moreira, P.A.F.P., Guedes, S., Iunes, P.J., Hadler, J.C., (2005) Nucl. Instr. Meth. B, 240, p. 881Ziegler, J.F., Ziegler, M.D., Biersack, J.P., SRIM-2008: The Stopping and Range of Ions in Matter, , Copyright: SRIM.com, 1984, 1986, 1989, 1991, 1992, 1994, 1995, 1998, 2000, 2001, 2003, 2006, 2008Hadler, J.C., Alencar, I., Iunes, P.J., Guedes, S., (2009) Radiat. Meas., 44, p. 746Jonckheere, R., (2003) Chem. Geol., 200, p. 41Alencar, I., Guedes, S., Hadler, J.C., (2011) Physicæ Proceedings, XI Young Researchers Meeting, 3. , doi: 10.5196/physicae.proceedings.XIYRM.2Tisserand, R., Rebetez, M., Grivet, M., Bouffard, S., Benyagoub, A., Levesque, F., Carpena, J., (2004) Nucl. Instr. Meth. B, 215, p. 129Spohr, R., (1990) Ion Tracks and Microtechnology: Principles and Application, , Vieweg Verlag pp. 282, Chapter 3Laslett, G.M., Kendall, W.S., Gleadow, A.J.W., Duddy, I.R., (1982) Nucl. Tracks, 6, p. 79Gleadow, A.J.W., (1981) Nucl. Tracks, 5, p. 3Jonckheere, R., (2003) Radiat. Meas., 36, p. 43S. Guedes, P.F.A.P. Moreira, R. Devanathan, W.J. Weber, J.C. Hadler, in preparationCoyle, D.A., Wagner, G.A., Hejl, E., Brown, R., Van Den Haute, P., (1997) Geol. Rundsch., 86, p. 203Gleadow, A.J.W., Duddy, I.R., (1981) Nucl. Tracks, 5, p. 16
    corecore