33 research outputs found

    Evaluation of the impact of reproductive technologies on the genetic improvement and profit of pig production systems

    Get PDF
    Boar utilization efficiency and fertility play a significant role on the productivity and profitability of the U.S. pig industry. The impact of artificial insemination technique, semen preparation, and selection for semen traits on profitability and complementary financial indicators was evaluated under a comprehensive range of productive and reproductive circumstances. Net profit was 2.2% to 2.6% higher in intra-uterine and deep intra-uterine relative to conventional artificial insemination with fresh semen and slightly higher with frozen semen. The differences in net profit between fresh and frozen semen were driven by differences in variable costs and ranged from -5.3% (conventional AI) to -24.7% (deep intra-uterine AI). Overall, insemination technique and semen preparation had a non-linear effect on profit. A subsequent study evaluated the impact of boar selection strategies including four semen traits in addition to standard paternal and maternal traits on genetic improvement and profit of the enterprise. A first-in-kind derivation of the economic weight of semen traits was undertaken. Genetic gains for paternal and maternal traits were higher in the four and three-way schemes, respectively. The selection strategy including the four semen traits is recommended because this approach enables genetic gains for these traits without compromising the genetic gains for maternal traits and with minimal losses in genetic gains for paternal traits. Three boar semen collections per week offered the highest return on investment. The selection strategy including semen traits had higher net profit (P-value < 0.0001) than the traditional strategy. Intra-uterine insemination allowed a further reduction on the number of boars maintained, lowered total cost, and increased net profit relative to conventional insemination. These studies demonstrate the potential genetic and financial benefits derived from efficient boar use through combination of reproductive techniques and collection frequencies; and selection strategies including semen traits

    Single nucleotide polymorphisms and haplotypes associated with feed efficiency in beef cattle

    Get PDF
    BACKGROUND:General, breed- and diet-dependent associations between feed efficiency in beef cattle and single nucleotide polymorphisms (SNPs) or haplotypes were identified on a population of 1321 steers using a 50K SNP panel. Genomic associations with traditional two-step indicators of feed efficiency - residual feed intake (RFI), residual average daily gain (RADG), and residual intake gain (RIG) - were compared to associations with two complementary one-step indicators of feed efficiency: efficiency of intake (EI) and efficiency of gain (EG). Associations uncovered in a training data set were evaluated on independent validation data set. A multi-SNP model was developed to predict feed efficiency. Functional analysis of genes harboring SNPs significantly associated with feed efficiency and network visualization aided in the interpretation of the results.RESULTS:For the five feed efficiency indicators, the numbers of general, breed-dependent, and diet-dependent associations with SNPs (P-value<0.0001) were 31, 40, and 25, and with haplotypes were six, ten, and nine, respectively. Of these, 20 SNP and six haplotype associations overlapped between RFI and EI, and five SNP and one haplotype associations overlapped between RADG and EG. This result confirms the complementary value of the one and two-step indicators. The multi-SNP models included 89 SNPs and offered a precise prediction of the five feed efficiency indicators. The associations of 17 SNPs and 7 haplotypes with feed efficiency were confirmed on the validation data set. Nine clusters of Gene Ontology and KEGG pathway categories (mean P-value<0.001) including, 9nucleotide bindingion transport, phosphorous metabolic process, and the MAPK signaling pathway were overrepresented among the genes harboring the SNPs associated with feed efficiency.CONCLUSIONS:The general SNP associations suggest that a single panel of genomic variants can be used regardless of breed and diet. The breed- and diet-dependent associations between SNPs and feed efficiency suggest that further refinement of variant panels require the consideration of the breed and management practices. The unique genomic variants associated with the one- and two-step indicators suggest that both types of indicators offer complementary description of feed efficiency that can be exploited for genome-enabled selection purposes.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    Non-invasive analysis of bovine embryo metabolites during <em>in vitro</em> embryo culture using nuclear magnetic resonance

    No full text
    The ability to identify embryos that have the highest developmental potential from a cohort would significantly increase the chances of achieving pregnancy. Metabolic analysis is a well-established analytical approach in biological systems. Starting from this idea, we chose to use high-resolution nuclear magnetic resonance (1H-NMR) spectroscopy. The aim of this study was to determine if it is possible to select viable embryos after 48 h of culture using metabolic activity as the parameter. We evaluated embryo metabolism after the first 48 h of culture and compared the activity of cleaved embryos that became blastocysts to cleaved embryos that did not develop to blastocysts, and in vitro fertilized (IVF) blastocysts and parthenogenetic-activated (PA) blastocysts. Our results show that citrate, pyruvate, myo-inositol and lysine have great impact on predicting embryo development. When we compared IVF and PA blastocysts, we found that acetate and phenylalanine concentrations are excellent parameters for evaluating blastocyst quality. Combining all these results, we were able to create a formula that predicts zygote development after 2 days of culture. In conclusion, we found that it is possible predict the future development of in vitro produced bovine embryos after only 2 days of culture using 1H-NMR

    Genome-Wide Association Study for Identifying Loci that Affect Fillet Yield, Carcass, and Body Weight Traits in Rainbow Trout (Oncorhynchus mykiss)

    Get PDF
    Fillet yield (FY, %) is an economically-important trait in rainbow trout aquaculture that affects production efficiency. Despite that, FY has received little attention in breeding programs because it is difficult to measure on a large number of fish and cannot be directly measured on breeding candidates. The recent development of a high-density SNP array for rainbow trout has provided the needed tool for studying the underlying genetic architecture of this trait. A genome-wide association study (GWAS) was conducted for FY, body weight at 10 (BW10) and 13 (BW13) months post-hatching, head-off carcass weight (CAR), and fillet weight (FW) in a pedigreed rainbow trout population selectively bred for improved growth performance. The GWAS analysis was performed using the weighted single-step GBLUP method (wssGWAS). Phenotypic records of 1447 fish (1.5 kg at harvest) from 299 full-sib families in three successive generations, of which 875 fish from 196 full-sib families were genotyped, were used in the GWAS analysis. A total of 38,107 polymorphic SNPs were analyzed in a univariate model with hatch year and harvest group as fixed effects, harvest weight as a continuous covariate, and animal and common environment as random effects. A new linkage map was developed to create windows of 20 adjacent SNPs for use in the GWAS. The two windows with largest effect for FY and FW were located on chromosome Omy9 and explained only 1.0–1.5% of genetic variance, thus suggesting a polygenic architecture affected by multiple loci with small effects in this population. One window on Omy5 explained 1.4 and 1.0% of the genetic variance for BW10 and BW13, respectively. Three windows located on Omy27, Omy17, and Omy9 (same window detected for FY) explained 1.7, 1.7, and 1.0%, respectively, of genetic variance for CAR. Among the detected 100 SNPs, 55% were located directly in genes (intron and exons). Nucleotide sequences of intragenic SNPs were blasted to the Mus musculus genome to create a putative gene network. The network suggests that differences in the ability to maintain a proliferative and renewable population of myogenic precursor cells may affect variation in growth and fillet yield in rainbow trout

    Differential Transcriptome Networks between IDO1-Knockout and Wild-Type Mice in Brain Microglia and Macrophages.

    No full text
    Microglia in the brain and macrophages in peripheral organs are cell types responsible for immune response to challenges. Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunomodulatory enzyme of the tryptophan pathway that is expressed in the brain. The higher activity of IDO1 in response to immune challenge has been implicated in behavioral disorders. The impact of IDO1 depletion on the microglia transcriptome has not been studied. An investigation of the transcript networks in the brain microglia from IDO1-knockout (IDO1-KO) mice was undertaken, relative to peripheral macrophages and to wild-type (WT) mice under unchallenged conditions. Over 105 transcript isoforms were differentially expressed between WT and IDO1-KO within cell type. Within microglia, Saa3 and Irg1 were over-expressed in IDO1-KO relative to WT. Within macrophages, Csf3 and Sele were over-expressed in IDO1-KO relative to WT. Among the genes differentially expressed between strains, enriched biological processes included ion homeostasis and ensheathment of neurons within microglia, and cytokine and chemokine expression within macrophages. Over 11,110 transcript isoforms were differentially expressed between microglia and macrophages and of these, over 10,800 transcripts overlapped between strains. Enriched biological processes among the genes over- and under-expressed in microglia relative to macrophages included cell adhesion and apoptosis, respectively. Detected only in microglia or macrophages were 421 and 43 transcript isoforms, respectively. Alternative splicing between cell types based on differential transcript isoform abundance was detected in 210 genes including Phf11d, H2afy, and Abr. Across strains, networks depicted a predominance of genes under-expressed in microglia relative to macrophages that may be a precursor for the different response of both cell types to challenges. The detected transcriptome differences enhance the understanding of the role of IDO1 in the microglia transcriptome under unchallenged conditions

    Microglia Transcriptome Changes in a Model of Depressive Behavior after Immune Challenge.

    No full text
    Depression symptoms following immune response to a challenge have been reported after the recovery from sickness. A RNA-Seq study of the dysregulation of the microglia transcriptome in a model of inflammation-associated depressive behavior was undertaken. The transcriptome of microglia from mice at day 7 after Bacille Calmette Guérin (BCG) challenge was compared to that from unchallenged Control mice and to the transcriptome from peripheral macrophages from the same mice. Among the 562 and 3,851 genes differentially expressed between BCG-challenged and Control mice in microglia and macrophages respectively, 353 genes overlapped between these cells types. Among the most differentially expressed genes in the microglia, serum amyloid A3 (Saa3) and cell adhesion molecule 3 (Cadm3) were over-expressed and coiled-coil domain containing 162 (Ccdc162) and titin-cap (Tcap) were under-expressed in BCG-challenged relative to Control. Many of the differentially expressed genes between BCG-challenged and Control mice were associated with neurological disorders encompassing depression symptoms. Across cell types, S100 calcium binding protein A9 (S100A9), interleukin 1 beta (Il1b) and kynurenine 3-monooxygenase (Kmo) were differentially expressed between challenged and control mice. Immune response, chemotaxis, and chemokine activity were among the functional categories enriched by the differentially expressed genes. Functional categories enriched among the 9,117 genes differentially expressed between cell types included leukocyte regulation and activation, chemokine and cytokine activities, MAP kinase activity, and apoptosis. More than 200 genes exhibited alternative splicing events between cell types including WNK lysine deficient protein kinase 1 (Wnk1) and microtubule-actin crosslinking factor 1(Macf1). Network visualization revealed the capability of microglia to exhibit transcriptome dysregulation in response to immune challenge still after resolution of sickness symptoms, albeit lower than that observed in macrophages. The persistent transcriptome dysregulation in the microglia shared patterns with neurological disorders indicating that the associated persistent depressive symptoms share a common transcriptome basis

    Visualization of the networks of genes differentially expressed between IDO1-knock out (IDO1-KO) and wild type (WT) mice in macrophages.

    No full text
    <p>Red (green) nodes indicate genes over- (under-) expressed in IDO1-KO relative to wild type. Node size indicate the P-value (large nodes indicate a more extreme nominal P-value < 0.0001 and small nodes indicate a P-value between 0.05 and 0.0001). Edges denote known relationships between genes and framed genes (red square) are discussed.</p

    Visualization of the networks of genes differentially expressed between microglia and macrophages in wild type mice.

    No full text
    <p>Red (green) nodes denote genes over- (under-) expressed in microglia relative to macrophages. Node size denotes the P-value (large nodes indicate a more extreme nominal P-value < 0.0001 and small nodes indicate P-values between 0.05 and 0.0001). Edges denote known relationships between genes and framed genes (red square) are discussed.</p

    Network of genes under-expressed in microglia relative to macrophages in wild type mice (|log2(fold change)| >|6, FDR-adjusted P-value < 5.0 x 10<sup>−5</sup>) visualized using STRING.

    No full text
    <p>Edges represented by thicker lines denote stronger associations than thinner lines. Node size reflects the structural information associated with the protein coded by the gene. The node color facilitates visualization. Framed genes (red square) are discussed.</p
    corecore