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Fillet yield (FY, %) is an economically-important trait in rainbow trout aquaculture that

affects production efficiency. Despite that, FY has received little attention in breeding

programs because it is difficult to measure on a large number of fish and cannot be

directly measured on breeding candidates. The recent development of a high-density

SNP array for rainbow trout has provided the needed tool for studying the underlying

genetic architecture of this trait. A genome-wide association study (GWAS) was

conducted for FY, body weight at 10 (BW10) and 13 (BW13) months post-hatching,

head-off carcass weight (CAR), and fillet weight (FW) in a pedigreed rainbow trout

population selectively bred for improved growth performance. The GWAS analysis was

performed using the weighted single-step GBLUP method (wssGWAS). Phenotypic

records of 1447 fish (1.5 kg at harvest) from 299 full-sib families in three successive

generations, of which 875 fish from 196 full-sib families were genotyped, were used

in the GWAS analysis. A total of 38,107 polymorphic SNPs were analyzed in a univariate

model with hatch year and harvest group as fixed effects, harvest weight as a continuous

covariate, and animal and common environment as random effects. A new linkage map

was developed to create windows of 20 adjacent SNPs for use in the GWAS. The two

windows with largest effect for FY and FW were located on chromosome Omy9 and

explained only 1.0–1.5% of genetic variance, thus suggesting a polygenic architecture

affected by multiple loci with small effects in this population. One window on Omy5

explained 1.4 and 1.0% of the genetic variance for BW10 and BW13, respectively.

Three windows located on Omy27, Omy17, and Omy9 (same window detected for

FY) explained 1.7, 1.7, and 1.0%, respectively, of genetic variance for CAR. Among the

detected 100 SNPs, 55% were located directly in genes (intron and exons). Nucleotide
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sequences of intragenic SNPs were blasted to the Mus musculus genome to create a

putative gene network. The network suggests that differences in the ability to maintain a

proliferative and renewable population of myogenic precursor cells may affect variation

in growth and fillet yield in rainbow trout.

Keywords: fillet yield, gene network, genome-wide association study, genomic selection, linkage map, rainbow

trout, single-step GBLUP

INTRODUCTION

Fillet yield (FY, %), the ratio between the separable muscle of the
fish and the harvest weight, is an economically important trait in
rainbow trout aquaculture that reflects production efficiency with
a consequent large impact on the returns (Kause et al., 2002). On
a per-unit basis, the fillet price is three times that of the whole
fish (Bugeon et al., 2010) and a recent global survey ranked FY
among the six most important traits for genetic improvement in
rainbow trout aquaculture (Sae-Lim et al., 2012). Despite that, FY
has not received much attention in breeding programs because
it is a lethally-measured trait, costly to measure, and difficult to
select on, thus limiting the genetic progress in traditional selective
breeding programs (Kause et al., 2007).

To overcome these phenotyping constraints and to increase
the accuracy of selection, the use of high-density single nucleotide
polymorphism (SNP) genotyping platforms and novel statistical
models can identify SNPs associated with the trait for use
in genomic selection (Dekkers, 2012). Several genome-wide
association studies (GWAS) that match genetic variants, with
or without pedigree records, with the observed phenotype have
identified significant loci associated with economically important
traits in livestock (Kadarmideen, 2014; Sharma et al., 2015).
The aquaculture research community is following this trend,
and interesting examples are available for growth and disease
resistance traits in Atlantic Salmon (e.g., Correa et al., 2015;
Gutierrez et al., 2015), rainbow trout (e.g., Kocmarek et al., 2015;
Liu et al., 2015b; Palti et al., 2015b), and catfish (e.g., Geng et al.,
2015).

Single-step genomic best linear unbiased prediction
(ssGBLUP) and Bayesian variable selection methods are
available for genomic predictions using dense SNP arrays. The
ssGBLUP method (Misztal et al., 2009; Christensen and Lund,
2010) jointly incorporates all available genotypic, phenotypic,
and pedigree data in the genomic predictions, but the method’s
assumption of an infinitesimal model is violated for traits
affected by major genes. In contrast, Bayesian variable selection
methods assume a prior distribution of the variance associated
with each locus (Meuwissen et al., 2001), but are limited in
that only data from genotyped animals are used in the analyses.
Despite the limitations on data, the Bayesian variable selection
method has resulted in greater accuracy of predicted genetic
merit compared to ssGBLUP for traits known to have QTL
segregating with moderate or large effect like bacterial cold water
disease resistance in rainbow trout (Vallejo et al., submitted
manuscript). The ssGBLUP method has been extended to a
weighted ssGBLUP (wssGBLUP) that emulates the Bayesian
variable selection method by allowing for unequal variances
across loci (Wang et al., 2012).

In rainbow trout, the recent development of the 57K SNP
Axiom R© Trout Genotyping Array (Palti et al., 2015a; Affymetrix,
Santa Clara, CA), a new genetic linkage map (published here)
developed using 47,939 markers included in the 57K SNP
Axiom R© Trout Genotyping Array, and the release of a reference
genome (Berthelot et al., 2014) have provided tools for studying
FY using GWAS. The objectives of this study were to conduct
a GWAS for FY and other carcass and body weight traits in a
rainbow trout population developed at the National Center for
Cool and Cold Water Aquaculture (NCCCWA) and selectively
bred for improved growth performance, and to visualize gene
networks and functional categories enriched among the putative
genes detected by GWAS for the studied traits.

MATERIALS AND METHODS

Ethics Statement
The National Center for Cool and Cold Water Aquaculture
(NCCCWA) Institutional Animal Care and Use Committee
(Leetown, WV) reviewed and approved all experimental
procedures used in this study (Protocol #056).

NCCCWA Population
The development, husbandry practices, and selective breeding of
the resource population used in this study have been previously
described (Leeds et al., 2016). Briefly, the population was initially
developed by intercrossing 7 domesticated strains of rainbow
trout. The population was closed to outside germplasm in 2004,
and has since been selectively bred each generation for improved
growth performance using an index of 10-month body weight
and thermal growth coefficient for the growth period between 10
and 13 months of age. Full-sib families characterized for harvest
traits in the current study were from the third (2010 year class;
98 families), fourth (2012 year class; 99 families), and fifth (2014
year class; 102 families) generations of selection. The population
was converted to all-female families beginning in 2010 by using
masculinized females as sires, thus the proportion of males was
only 11% in 2010, 4% in 2012, and 0.6% in 2014. All data
used in the current study were from non-masculinized fish. All
families were maintained in separate tanks to retain pedigree
information until tagging with a passive integrated transponder
(Avid Identifiction Systems Inc., Norco, CA) at 4–5 months post-
hatch. An average of 15.6 fish per family was tagged in 2010,
2012, and 2014 (range= 8–17 fish per family). After tagging, fish
from all families were commingled in replicate grow-out tanks.
All fish were fed a standard commercial diet (Ziegler Bros, Inc.,
Gardners, PA) throughout the study using automated feeders
(Arvotec, Huutokoski, Finland).
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Traits
Individual body weight data at 10 months (BW10; 295 d ± 18.8)
and 13 months (BW13; 386 d ± 12.9) post-hatch were recorded
as part of the selective breeding program (Leeds et al., 2016) and
were available from 2002 to 2014 (Table 1).

Five fish from each 2010, 2012, and 2014 year class full-sib
family were identified for characterization of FY. The aim was
to sample fish that represented the range of body weights within
each family, with the exception that the largest and smallest
fish from each family were excluded. Most families had 15 fish
available for sampling at 13 months of age (range= 8–17 fish per
family). Thus, to identify fish for FY characterization, the dataset
was sorted by family and in descending order of body weight and
every 2nd or 3rd fish was selected so that the distribution of body
weights was uniformly centered around the median of the family.
Selected fish were assigned to one of five harvest groups each
generation (∼100 fish per harvest group) with the aim of having
one fish per family per harvest group. One harvest group per
week was processed in each of five consecutive weeks, with the
exception that year class 2012 fish were harvested over a 6-week
period due to scheduling conflicts. Fish were taken off feed 5 days
before harvesting. Fish were harvested between 410 and 437 days
post-hatch (mean body weight = 985 g; SD = 239 g), between
446 and 481 days post-hatch (mean body weight = 1803 g; SD =

305 g), and between 407 and 435 days post-hatch (mean body
weight = 1617 g; SD = 255 g) for the 2010, 2012, and 2014
hatch years, respectively. At harvest, fish were euthanized using
a lethal dose of tricaine methanesulfonate (Tricaine-S, Western
Chemical, Ferndale, WA), weighed, eviscerated, and placed on
ice overnight. The next day, carcasses were beheaded, weighed,
and hand-filleted by a single, experienced technician. The same
technician filleted all fish from the 2010 and 2012 year class
families, and a different technician filleted all fish from the 2014
year class families. Fillet weight was recorded as the sum of both
fillets for each fish; fillet weights excluded the skin in 2010 and
2012 year class families but included skin in 2014 year class
families. A summary of the records available, mean, standard
deviation and coefficient of variation for each trait is presented
in Table 1.

Genetic Linkage Map
As the current rainbow trout refrence genome (Berthelot
et al., 2014) is fragmented into sequence scaffolds and true
chromosome sequences are not yet available as a reference for
genetic analyses like GWAS, we generated a new dense linkage
map which was used as a genetic map reference in this study
(Table S1). The 57K SNP Axiom R© Trout Genotyping Array
(Palti et al., 2015a) was used to genotype (GeneSeek, Inc., Lincoln,
NE) 2464 samples collected across 46 full-sib families from
a commercial Norwegian population and 10 full-sib families
from the NCCCWA odd-year breeding population. Following
quality control of raw genotype data as previously described
(Palti et al., 2015a), linkage mapping was performed with Lep-
MAP software (Rastas et al., 2013). First, SNPs were assigned
to linkage groups with the “SeparateChromosomes” command
using increasing LOD thresholds until the observed number
of linkage groups corresponded with the haploid chromosome
number in this species. Additional SNPs were subsequently

added to the groups with the “JoinSingles” command at a more
relaxed LOD threshold, and finally SNPs were ordered in each
linkage group with the “OrderMarkers” command. Numerous
iterations were performed to optimize error and recombination
parameters. A total of 47,839 SNPs were mapped to 29 linkage
groups, with an average of 1650 SNPs per group. The number
of SNPs assigned to each group ranged from 754 to 2934. The
total distances covered by the male and female maps were 2214
cM and 4248 cM, respectively. In all 13 chromosomes, known
to have homologous pairing with at least one other chromosome
arm, female/male recombination ratios were >2.0; whereas, in
non-duplicated chromosomes, the female/male recombination
ratio ranged from 1.0 to 2.0, with the exception of chromosomes
Omy15 and Omy21.

Genotyping for FY GWAS
The 57K SNP Axiom R© Trout Genotyping Array (Palti et al.,
2015a) was used to genotype 941 fish with FY phenotypes from
the 2010 and 2012 year classes (197 full-sib families) and 392
direct ancestors of these fish back to the grandparents of the 2010
year class families. Quality control (QC) of the genotype data was
performed to exclude fish with genotype call rates <0.95. Of the
941 fish with FY phenotypes and genotypes and from the 392
direct ancestors with only genotypes, were retained 875 and 391,
respectively (1266 fish) that passed QC. Genotypic data from the
391 direct ancestors were used to confirm accuracy of pedigrees
for the 875 phenotyped and genotyped fish used in the GWAS.

From the initial 42,488 SNPs that were polymorphic in
this population, we retained those with call rates greater
than 0.90, minor allele frequencies greater than 0.05, and
no departures from Hardy-Weinberg equilibrium (SNPs were
excluded when the difference between observed and expected
genotype frequencies was>0.15). A total of 38,107 effective SNPs
passed QC filtering and were used in the GWAS.

Genome-Wide Association Study (GWAS)
GWAS was carried out using the weighted single-step GBLUP
approach (wssGWAS, Wang et al., 2012). This method combines
phenotype, genotype, and pedigree data in a joint analysis
and is implemented in the BLUPF90 software (Misztal et al.,
2002; Aguilar et al., 2010; Wang et al., 2012). The wssGWAS
avoids spurious solutions of SNPs, uses phenotypes from non-
genotyped individuals included in the pedigree, and allows
multi-trait analyses (Fragomeni et al., 2014; Wang et al., 2014).
However, multi-trait analysis was not performed in this study
due to convergence issues associated with the balance of the
information. Thus, a single trait analysis was performed using the
following model:

y = Xb + Z1a + Z2w + e

where y is the vector of the phenotypes, b is the vector of fixed
effects including hatch year (all traits), harvest group (except
BW10 and BW13), and contemporary group (only for BW10
and BW13), a is the vector of additive genetic effects or SNP
effects, w is the vector of the common environment effect, and
e is the residual error. Two co-variables were included: post-
hatch age for BW10 and BW13 and harvest weight for CAR,
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TABLE 1 | Number of observation (n), mean, standard deviation (SD), and coefficient of variation (CV, %) of the analyzed traits and weight at harvest.

Trait Acronym Trait type N Mean SD CV (%)

10-month BW, g BW10 Biometric 17,174 416.5 153.7 36.9

13-month BW, g BW13 Biometric 15,810 896.3 328.8 36.7

Weight at harvest, g Co-variable Biometric 1447 1472.7 438.4 29.8

Eviscerated BW without head, g CAR Biometric 1445 1122.9 336.6 30.0

Weight of fillet, g FW Biometric 1447 739.4 235.2 31.8

Weight of fillet/Weight at harvest (%) FY Yield 1447 49.82 2.7 5.4

FW, and FY. X, Z1, and Z2 are incidence matrices relating a
record to fixed effects in b and random animal and common
environment effects in a and w, respectively. The genomic (G)
relationship matrix was created according to VanRaden (2008)
and combined with the numerator (A) relationship matrix into
a realized (H) relationship matrix to estimate additive genetic
relationships among all individuals (Aguilar et al., 2010). The
number of phenotypic records used in each single trait analysis is
given in Table 1, and all analyses were conducted using complete
pedigree data (17,706 fish) dating back to initial development of
the population (8 generations). A total of 875 fish from 196 full-
sib families used in the GWAS analyses had genotypic data from
the SNP array and phenotypic data for all traits in Table 1.

The ssGWAS2 scenario described by Wang et al. (2014) was
used to estimate genomic breeding values and iteratively estimate
and weight SNP effects. Windows of 20 adjacent SNPs based on
the new genetic linkage map were created using POSTGSF90
(Aguilar et al., 2014). Creation of windows of consecutive SNPs
can capture the effect of the quantitative trait loci (QTL) better
than a single SNP (Habier et al., 2011) due to signal concentration
(Sun et al., 2011). Similar to previous reports (Dikmen et al.,
2013; Fragomeni et al., 2014; Wang et al., 2014; Zhang et al.,
2016), we found that the use of windows with a smaller number
of SNPs resulted in a decreased signal-to-noise ratio compared
to windows with 20 or more SNPs (data not shown). Therefore,
exclusive windows (non-overlapping) of 20 consecutive SNPs
were used in the GWAS analyses and the Manhattan plots
with GWAS results were created using the R package qqman
(Turner, 2014). Due to the quantitative nature of the traits used
in this study, five iterations (wssGWAS) were implemented to
reduce the background noise of SNP windows and differentiate
the windows accounting for the largest proportion of variance.
However, the differences in the results beyond 3 iterations
were minimal (results not presented). Rather than using P-
values from classical hypothesis tests to declare regions as
significantly associated with the trait (Dikmen et al., 2013), here
we identified genomic regions (windows) that explained the
highest proportion (around 1%) of genetic variances (Wang et al.,
2014).

Putative Genes Network
Interpretation of the GWAS results was facilitated using network
reconstruction and visualization. A network was created using
SNPs in windows that explain the highest proportion of the
variance for a particular trait. Selected SNPs were located in

the rainbow trout genome (Berthelot et al., 2014) using the
Golden Helix Genome Browser v2.1.0 (Golden Helix Inc.). When
a SNP was mapped to a gene (exon or intron), the nucleotide
sequence was blasted to the Mus musculus genome using NCBI
tools to predict the orthologous genes. The mouse genome
was selected because it is well annotated, is available in several
bioinformatics tools, and has been used as a model organism
for many years (Guenet, 2005). With the list of the genes, a
network was visualized with Cytoscape (Shannon et al., 2003;
Serão et al., 2013) using the BisoGenet plug-in (Martin et al.,
2010; Gonzalez-Pena et al., 2016). The BisoGenet plug-in uses
empirical and predicted DNA-DNA, DNA-protein, and protein-
protein interactions to reconstruct and visualize likely mouse
gene networks. Only gene-gene interactions were represented
and only one neighbor connecting the genes was admitted.
The edges denote known relationships between genes from
several databases summarized in the SysBiomics repository that
integrates data from NCBI, UniProt, KEGG, and GO databases
using the k-nearest neighbor model. The node color denotes if
the gene was identified (green) directly from the GWAS or if it is
a connecting neighbor (pink) based on annotation of the mouse
genome.

A functional analysis was attempted using the Database for
Annotation, Visualization and Integrated Discovery (DAVID
6.7; Huang et al., 2009a,b) with the genes detected by the
GWAS. However, enriched gene ontology, biological processes,
molecular functions, and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways were not identified with a relevant
false discovery rate. We assume that the polygenic nature of
the traits was a major contributor to our inability to identify
functional candidate genes near the QTL detected in the GWAS.
In addition, the overall number of protein coding open reading
frames we were able to find near the QTL was relatively small due
to the small genome scaffolds and fragmented reference genome
that is currently available for rainbow trout (Berthelot et al.,
2014), which did not allow for evaluating genes on neighboring
genome sequence scaffolds.

RESULTS AND DISCUSSION

Genetic Parameter Estimates
Heritability estimates (h2) for FY, FW, BW10, BW13, and CAR
were moderate to high (0.31–0.62, Table 2) suggesting that
these traits can be improved through selective breeding. The
heritability estimates for body weight measures (BW10 and
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TABLE 2 | Genetic parameters of the traits body weight at 10 (BW10) and 13 (BW13) months post-hatching, carcass weight (CAR), fillet weight (FW), and

fillet yield (FY) without (WO_GI) and with (W_GI) genomic information.

Parameters BW10, g BW13, g CAR, g FW, g FY, %

WO_GI W_GI WO_GI W_GI WO_GI W_GI WO_GI W_GI WO_GI W_GI

σ2a 3399.5 4108.9 15,044 17,939 679.9 684.5 363.0 412.8 1.8 1.9

σ2w 1427.4 1346.1 6344.1 6316.7 46.0 19.7 10.6 7.6 0.6 0.3

σ2e 6031.5 5659.4 24,979 23,482 362.7 355.5 533.8 510.8 3.0 3.1

σ2p 10,858.4 11,114.4 46,367.1 47,737.7 1088.6 1059.6 907.4 931.2 5.4 5.4

h2 0.31 0.37 0.32 0.38 0.62 0.65 0.40 0.44 0.34 0.36

Acc 0.66 0.70 0.65 0.69 0.28 0.55 0.25 0.50 0.13 0.55

r(EBV,GEBV) 0.99 0.99 0.76 0.79 0.72

σ
2
a , additive variance; σ

2
w, common environment variance; σ

2
e , residual variance; σ

2
p , phenotypic variance; h

2, heritability (additive variance/phenotypic variance); Acc, average accuracy;
r(EBV,GEBV), correlation between estimated breeding values (EBV) and genomic estimated breeding values (GEBV).

BW13) and FW were in the range of 0.19–0.50 (Elvingson and
Johansson, 1993; Neira et al., 2004; Kause et al., 2007) and
0.22–0.52 (Kause et al., 2002, 2007; Powell et al., 2008; Haffray
et al., 2012), respectively, as previously reported for salmonids.
Similarly, the heritability estimate for FY was in the interval
previously reported for salmonids (0.03–0.38), and CV was in
the upper range of estimates (0.12–6.5%) (Neira et al., 2004;
Kause et al., 2007; Powell et al., 2008; Haffray et al., 2012). The
heritability estimate for CAR (h2 = 0.62) was higher than
previous estimates of 0.36–0.53 reported in the literature (Powell
et al., 2008; Haffray et al., 2012).

The correlations between estimated breeding values (EBVs)
and genomic breeding values (GEBVs) were near unity (0.99)
for traits measured directly on breeding candidates (BW10
and BW13) and smaller (0.72–0.79) for lethally-measured traits
(CAR, FW, and FY; Table 2). In the absence of progeny
performance data or a correlated trait that can be measured
directly on breeding candidates, traditional BLUP-based EBVs
for CAR, FW, and FY are necessarily identical among non-
phenotyped siblings, whereas the use of genomic information
(GI) in GBLUP enables fish-specific GEBVs despite the absence
of phenotypic data for the fish, its progeny, or for a correlated
trait. Thus, the smaller correlations between EBVs and GEBVs
for lethally-measured traits was expected because the correlation
is between family-specific and fish-specific estimates of genetic
merit, respectively. When GI was added to the aforementioned
analysis, a slight increase in heritabilities was observed for
all traits (Table 2). However, the accuracies of GEBVs were
increased by ∼100% for CAR and FW (from 0.28 and 0.25 to
0.55 and 0.50, respectively) and by ∼420% for FY (from 0.13
to 0.55) compared traditional pedigree-based EBVs. For lethally-
measured traits like FW, FY, and CAR, traditional selective
breeding programs rely on sib-testing with limited reliability
(Odegård et al., 2014). Therefore, methods that increase accuracy
of predictions and expedite genetic progress by exploiting within-
family genetic variation for economically-important traits in
aquaculture species are important for continued development of
the aquaculture industry (Yáñez et al., 2015). Models that include
GI from numerous SNP markers in addition to the phenotypic
and pedigree information without previous knowledge of the

underlying QTL outperformed models without GI (Nielsen et al.,
2009; Odegård et al., 2014). This improved performance of GI
models is expected based on the definition of the accuracy as a
function of heritability and amount of information used (Chen
et al., 2011). Examples of traits for which inclusion of GI resulted
in an increase in accuracy include growth in broiler chickens
(Wang et al., 2014); lice resistance and fillet color in Atlantic
salmon (Odegård et al., 2014); and weight and length traits in
Atlantic salmon (Tsai et al., 2015).

GWAS
The Manhattan plots from GWAS results at iteration 5 for
FY, FW, BW10, BW13, and CAR are shown in Figures 1–5,
respectively. In total, 1906 non-overlapping, non-repetitive
windows of 20 successive SNPs were used. Of these windows,
two windows located on chromosome Omy9 explained 1.5
and 1.0% of the genetic variance for FY. The same windows
explained 1.2 and 1.1% of the genetic variance for FW. Only one
window, located on Omy5, was responsible for 1.38 and 0.95%
of the genetic variance for BW10 and BW13, respectively. Three
windows located onOmy27, Omy17, andOmy9 were responsible
for 1.7, 1.7, and 1.0%, of the genetic variance in CAR, respectively.

No major QTL was detected for FY, suggesting that this trait
has a polygenic architecture affected by multiple loci with small
effects in this rainbow trout population. The SNP markers from
the two windows that explained at least 1.0% of the proportion
of variance for FY and harboring or neighboring genes from
the same genome scaffold (Berthelot et al., 2014) are listed in
Table 3. An extended list of all the SNPs markers is provided in
Table S2. Only 13 of the 40 SNPs identified by the wssGWAS
on Omy9 explained a proportion of the genetic variance equal
to or greater than 0.1%. Of them, nine were located within a
gene (exon or intron) and the other four had known neighboring
genes in the same genome scaffold. Four of those 13 SNPs were
located in scaffold_516, of which one SNP was mapped to exon
6 of Properdin, another to exon 3 of Transmembrane protein
201-like, and two SNPs were mapped in the intron regions of
Calsyntenin-1-like isoform x2 (Table 3). Briefly, Properdin is
one of the proteins that participates in the complement system,
which also may interfere with fatty acid uptake and esterification
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FIGURE 1 | The proportion of genetic variance explained by 20-SNP regions for fillet yield.

FIGURE 2 | The proportion of genetic variance explained by 20-SNP regions for fillet weight.

FIGURE 3 | The proportion of genetic variance explained by 20-SNP regions for 10-month body weight.

in adipocytes (Gauvreau et al., 2012). Transmembrane protein
201-like is a component of transmembrane actin-associated
nuclear lines with a role in centrosome orientation and nuclear
movement prior to cell migration (Borrego-Pinto et al., 2012).
Calsyntenin-1 is associated with kinesin-1-mediated transport of
vesicles and tubulovesicular organelles (Konecna et al., 2006),
appears to participate in intracellular transport and endosomal
trafficking, and is necessary for the formation of peripheral

sensory axons (Ponomareva et al., 2014). However, the biological
functions of calsyntenins are not well understood yet (Ortiz-
Medina et al., 2015).

The same two windows found in the FY GWAS were also
associated with FW. However, from the 40 SNPs markers
identified by the wssGWAS, only 12 explained a proportion
equal to or greater than 0.1% and of them, nine were in
a gene (exon or intron, Table 4). An extended list of all
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FIGURE 4 | The proportion of genetic variance explained by 20-SNP regions for 13-month body weight.

FIGURE 5 | The proportion of genetic variance explained by 20-SNP regions for carcass weight.

the SNP markers is provided in Table S3. Similar to FY, no
major QTL was detected for FW which supports the polygenic
architecture of FW. Three of the 12 SNPs were also located in
scaffold_516 within the Calsyntenin-1-like isoform x2, Properdin
and Transmembrane protein 201-like genes (Table 4). Three
additional SNPs were located in scaffold_347 in the Src-
like-adapter 2; Serine/ threonine-protein kinase sbk1-like; and
Phd finger protein 20-like isoform x3 genes. Briefly, Src-like-
adapter 2 is an adaptor protein that regulates T and B cell
maturation and development, and it is a critical component
regulating signal transduction in immune and malignant cells
(Sosinowski et al., 2001; Dragone et al., 2006; Kazi et al., 2015).
Additionally, differentially-expressed transcripts in response to
handling and confinement stress in rainbow trout were mapped
to a serine/threonine-protein kinase, SBK1, homologous in
zebrafish that participates in signal transduction pathways related
to brain development (Chou et al., 2006; Liu et al., 2015a).

Genome regions associated with growth have been detected
on most of the 29 chromosomes in Atlantic salmon (Baranski
et al., 2010; Gutierrez et al., 2012, 2015; Tsai et al., 2015) and in
rainbow trout (O’Malley et al., 2003; Perry et al., 2005; Wringe
et al., 2010). The heterogeneity in the results makes it hard to
compare our results to previous studies. Many factors contribute

to this observed heterogeneity between studies including: (1) the
highly polygenic architecture of growth and growth-related traits;
(2) differences in marker segregation that may be affected by
the strain genetic background, and different types and densities
of markers used in each study; (3) different algorithms used in
the QTL detection analyses; (4) large variation in sample size
(Baranski et al., 2010; Wringe et al., 2010; Tsai et al., 2015),
and (5) possible false positives. None of the 20 SNPs identified
by the wssGWAS for BW10 and BW13 on chromosome Omy5
(Figures 3, 4) were able to surpass the threshold of 0.1%. The
complete list of the SNPs is provided in Tables S4, S5 for
BW10 and BW13, respectively. Our findings of the polygenic
architecture of growth traits in fish is consistent with previous
reports in the literature (Devlin et al., 2009; Dai et al., 2015;
Tsai et al., 2015), and, congruent with our GWAS results, several
markers were associated with weight in a GWAS for Atlantic
salmon, but the proportion of variance explained by each marker
was less than 0.1% (Tsai et al., 2015).

Lastly, SNP markers that explained more than 0.1% of the
proportion of genetic variance for CAR onOmy27, 17, and 9, and
harboring or neighboring genes from the same genome scaffold
(Berthelot et al., 2014) are listed in Table 5. No major QTL was
detected for this trait. An extended list of all the SNP markers
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TABLE 3 | The SNP markers that explained the largest proportion of variance for fillet yield using 20-SNP windows.

Marker Chr Position

(cM)

Alleles VE (%) Scaffold Scaffold

position

Scaffold

size

Loc Description

WINDOW 1 TOTAL PROPORTION 1.5%

AX-89976492 9 125.19 T/C 0.13 Scaffold_8612 10,780 26,627 Intron Beta-catenin-interacting protein 1

isoform x1

AX-89970327 9 125.19 A/C 0.11 Scaffold_516 399,414 728,099 Intron Calsyntenin-1-like isoform x2

AX-89940136 9 125.19 A/G 0.12 Scaffold_516 407,663 728,099 Intron Calsyntenin-1-like isoform x2

AX-89936139 9 125.67 A/C 0.13 Near* None

AX-89944669 9 125.67 G/T 0.13 Scaffold_32707 921 3946 Exon 1 Nudix hydrolase chloroplastic-like

AX-89940514 9 125.67 T/C 0.12 Scaffold_10308 15,430 21,663 Near* None

AX-89937961 9 125.67 G/T 0.13 Scaffold_516 586,177 728,099 Exon 6 Properdin

AX-89951506 9 125.67 G/A 0.12 Scaffold_516 555,991 728,099 Exon 3 Transmembrane protein 201-like

AX-89938525 9 125.86 G/A 0.10 Scaffold_52 1,795,215 2,128,772 Intron Atpase family aaa

domain-containing protein 3-like

AX-89957923 9 126.04 A/G 0.13 Scaffold_19674 6079 8261 Near* None

WINDOW 2 TOTAL PROPORTION 1.0%

AX-89951447 9 117.12 G/A 0.10 Scaffold_43535 864 3113 Near* None

AX-89940159 9 117.12 T/C 0.11 Scaffold_347 148,757 935,129 Intron Serine threonine-protein kinase

sbk1-like

AX-89924961 9 117.91 C/T 0.10 Scaffold_347 414,782 935,129 Exon 6 Phd finger protein 20-like isoform x3

Chr, chromosome; VE, percentage of the genetic variance explained by the SNP; Loc, location in the scaffold with three possibilities: intron, exon, or near an exon.

TABLE 4 | The SNP markers that explained the largest proportion of variance for fillet weight using 20-SNP windows.

Marker Chr Position

(cM)

Alleles VE (%) Scaffold Scaffold

position

Scaffold

size

Loc Description

WINDOW 1 TOTAL PROPORTION 1.2%

AX-89976492 9 125.19 T/C 0.12 Scaffold_8612 10,780 26,627 Intron Beta-catenin-interacting protein 1

isoform x1

AX-89970327 9 125.19 A/C 0.10 Scaffold_516 399,414 728,099 Intron Calsyntenin-1-like isoform x2

AX-89936139 9 125.67 A/C 0.11 Near* None

AX-89944669 9 125.67 G/T 0.11 Scaffold_32707 921 3946 Exon 1 Nudix hydrolase chloroplastic-like

AX-89940514 9 125.67 T/C 0.10 Scaffold_10308 15,430 21,663 Near* None

AX-89937961 9 125.67 G/T 0.11 Scaffold_516 586,177 728,099 Exon 6 Properdin

AX-89951506 9 125.67 G/A 0.11 Scaffold_516 555,991 728,099 Exon 3 Transmembrane protein 201-like

WINDOW 2 TOTAL PROPORTION 1.1%

AX-89953042 9 116.09 G/A 0.10 Scaffold_1609 166,168 200,099 Exon 4 Kelch domain-containing protein 8b

AX-89951447 9 117.12 G/A 0.13 Scaffold_43535 864 3113 Near* None

AX-89975284 9 117.12 A/C 0.11 Scaffold_347 348,224 935,129 Exon 7 Src-like-adapter 2

AX-89940159 9 117.12 T/C 0.12 Scaffold_347 148,757 935,129 Intron Serine threonine-protein kinase

sbk1-like

AX-89924961 9 117.91 C/T 0.13 Scaffold_347 414,782 935,129 Exon 6 Phd finger protein 20-like isoform x3

Chr, chromosome; VE, percentage of the genetic variance explained by the SNP; Loc, location in the scaffold with three possibilities: intron, exon, or near an exon.

is provided in Table S6. From the 60 SNP markers identified by
wssGWAS, only 18 explained a proportion equal to or greater
than 0.1%, of which 10 were in a gene (exon or intron). Four of
the 18 SNPs were located in scaffold_173; one was in the exon of
ubiquitin-conjugating enzyme e2 variant 1, and three were near
this gene and near the histone h2b 1 2-like gene. One of the SNPs
was mapped to the Calsyntenin-1-like isoform x2 intron region
in scaffold_516 that also affected FY and FW.

Putative Genes
Networks of genes offer insight to the molecular relationships
among genes. The network was visualized considering genes
and neighboring genes located in the same genome scaffold as
the SNPs we identified in the wssGWAS in 20-SNP windows
responsible for ∼1.0% or more of the total genetic variance for
the analyzed traits. Genes included in the network are described
in Tables S2–S6. The network includes 115 gene nodes, of which
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TABLE 5 | The SNP markers that explained the largest proportion of variance for carcass weight using 20-SNP windows.

Marker Chr Position

(cM)

Alleles VE (%) Scaffold Scaffold

position

Scaffold

size

Loc Description

WINDOW 1 TOTAL PROPORTION 1.7%

AX-89952551 27 75.09 A/G 0.12 Scaffold_1006 143,453 383,627 Near nitric oxide inducible/serine

threonine-protein kinase nlk

AX-89954149 27 75.09 C/A 0.12 Scaffold_147 921,922 1,497,438 Near atp-sensitive inward rectifier

potassium channel 1-like/cmp-n-

acetylneuraminate-beta-

galactosamide-alpha-sialyltransferase

4-like isoform x1

AX-89938133 27 75.09 A/G 0.13 Scaffold_1006 46,265 383,627 Exon3 nitric oxide inducible

AX-89948564 27 74.78 G/A 0.12 Scaffold_8798 5532 26,005 Near Undetermined/None

AX-89974542 27 74.58 G/T 0.11 Scaffold_842 38,757 463,739 Intron kinase suppressor of ras 1-like

isoform x2

AX-89926230 27 74.58 A/G 0.12 Scaffold_1952 116,665 147,230 Near neurofibromin isoform

x2/oligodendrocyte-myelin glyco

AX-89938965 27 74.43 G/T 0.12 Scaffold_842 38,933 463,739 Intron kinase suppressor of ras 1-like

isoform x2

AX-89928353 27 73.96 G/A 0.10 Scaffold_1675 177,158 191,261 Intron vascular endothelial zinc finger 1-like

isoform x2

AX-89968747 27 73.96 A/G 0.11 Scaffold_3611 60,104 62,580 Intron unconventional myosin-xviiia-like

isoform x1

AX-89947091 27 73.96 na 0.10 na Na

AX-89942611 27 73.42 C/A 0.16 Scaffold_3980 33,385 57,002 Intron unconventional myosin-xviiia-like

isoform x2

WINDOW 2 TOTAL PROPORTION 1.7%

AX-89973675 17 115.87 G/T 0.10 Scaffold_26752 3396 4948 Intron spectrin beta non-erythrocytic 1-like

AX-89969602 17 114.85 C/T 0.10 Scaffold_24 197,378 2,579,057 Intron calpain-2 catalytic subunit-like

AX-89935000 17 114.02 A/G 0.17 Scaffold_173 119,365 1,392,108 Near histone h2b 1

2-like/ubiquitin-conjugating enzyme

e2 variant 1

AX-89918454 17 114.02 C/A 0.12 Scaffold_173 123,912 1,392,108 Near histone h2b 1

2-like/ubiquitin-conjugating enzyme

e2 variant 1

AX-89923840 17 113.51 C/T 0.18 Scaffold_173 195,297 1,392,108 Exon4 ubiquitin-conjugating enzyme e2

variant 1

AX-89925576 17 113.51 A/G 0.18 Scaffold_173 160,398 1,392,108 Near histone h2b 1

2-like/ubiquitin-conjugating enzyme

e2 variant 1

WINDOW 3 TOTAL PROPORTION 1.0%

AX-89940136 9 125.19 A/G 0.10 Scaffold_516 407,663 728,099 Intron Calsyntenin-1-like isoform x2

Chr, chromosome; VE, percentage of the genetic variance explained by the SNP; Loc, location in the scaffold with three possibilities: intron, exon, or near an exon.

21 nodes were genes detected by the wssGWAS analysis (green
nodes) while the rest were connecting neighbors (pink nodes,
Figure 6). In this network, SRY (sex determining region Y)-box
2 (Sox2), Kinase suppressor of ras 1 (Ksr1), Tripartite motif-
containing 33 (Trim33), and Nitric oxide synthase 2 inducible
(Nos2) were well-connected gene nodes linking to 29, 11, 7, and
6 other gene nodes, respectively.

A number of genes detected by wssGWAS analysis within
windows responsible for 1.0% or greater of the trait variance have
been identified in mammalian systems as significant for muscle
development, particularly with respect to the maintenance
of hyperplastic capacity. Rainbow trout exhibit indeterminate
growth potential as they have the ability increase both body
length and muscle mass throughout adulthood (Johnston et al.,

2011). A physiological mechanism unique to indeterminate
growers is the ability to maintain a population of myogenic
precursor cells with proliferative capacity that then differentiate
into myotubes or contribute to nuclear accretion (Mommsen,
2001; Froehlich et al., 2013). Therefore, the continued ability for
hyperplasia and hypertrophy in skeletal muscle contributes to
the indeterminate growth phenotype (Johnston et al., 2011). In
this regard, SNPs affecting genes related to myogenic and cell
proliferation mechanisms are expected to affect growth and fillet
yield.

One gene detected by wssGWAS analysis that was the most
connected node was Sox2. The Sox2 gene plays a critical role
in maintenance and proliferation of pluripotent and neural
progenitor stem cells (Takahashi and Yamanaka, 2006; Zhang
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FIGURE 6 | Network of genes and neighboring genes in the same scaffold as the SNPs identified in the wssGWAS in windows responsible for ∼1.0% or

more of the total genetic variance of the analyzed traits. Green nodes denote genes and near genes detected by the wssGWAS analysis and pink nodes denote

connecting neighbors. Edges denote known relationships between genes in the SysBiomics repository. Framed genes (red square) are discussed in the manuscript.

and Cui, 2014) through its interaction with transforming Growth
Factor β (TGFb) signaling (Gaarenstroom and Hill, 2014),
although little is known about the role of Sox2 in muscle.
Albeit, TGFb ligands like myostatin inhibit muscle growth (Lee
et al., 2005; Phelps et al., 2013), partially through reductions in
myogenic precursor cell proliferation (Garikipati and Rodgers,
2012; Seiliez et al., 2012). Trim33 is another gene detected
by wssGWAS analysis that is up-regulated during muscle
regeneration in mice and appears to play a role in myoblast
proliferation (Mohassel et al., 2015). Therefore, similar to Sox2,
Trim33 may also contribute to maintaining a proliferating
population of myogenic precursor cells throughout development
in the rainbow trout. Trim33 also inhibits Smad4 (Xi et al., 2011),
a transcription factor activated by TGFb signaling that inhibits
muscle regeneration and maintenance of myogenesis with age
(Lee et al., 2005).

A third gene identified by wssGWAS analysis was Fragile
X mental retardation gene 1 (Fxr1), an autosomal gene that is
highly expressed in muscle (Blonden et al., 2005). Depletion

of this gene during early development of the zebrafish leads
to cardiomyopathy and muscular dystrophy (Van’t Padje et al.,
2009). In cultured muscle cells, depletion of Fxr1 reduced
myoblast abundance, suggesting an evolutionarily-conserved
role for Fxr1 protein in myogenesis (Davidovic et al., 2013).
A fourth gene detected by wssGWAS analysis that may affect
myogenic capacity was Ksr1. This gene is a scaffold protein for
the Raf/MEK/ERK kinase cascade (Ory et al., 2003). Although, a
role of for Ksr1 in muscle has not been demonstrated, activation
of the Raf/Mek/ERK kinase cascade promotes proliferation of
myogenic cells (Knight and Kothary, 2011). A final gene that
may affect myogenesis was Proviral integration site 1 (Pim1),
a gene that, when overexpressed in cardiomyocytes, causes
increases in regenerative capacity and increases the pool of
progenitor cells (Del Re and Sadoshima, 2012), although it
is unknown if this gene has significance in skeletal muscle.
However, expression of Pim1 has been positively correlated
with intramuscular fat content in steers (Sadkowski et al.,
2014).
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Another pair of genes that were detected by wssGWAS
and are known to encode proteins with functional importance
to muscle physiology are the cysteine proteases Calpain-1
(Capn1) and Calpain-2 (Capn2). Calpains are calcium activated
cysteine proteases regulated by myogenic factors like myoD and
myogenin (Dedieu et al., 2003). Calpains have a relevant role in
signal transduction (Glading et al., 2001; Sato and Kawashima,
2001), cell-cycle regulation, apoptosis (Atencio et al., 2000;
Patel and Lane, 2000), cell spreading and migration (Dourdin
et al., 1997; Huttenlocher et al., 1997; Potter et al., 1998), and
myogenesis (Barnoy et al., 2000). Calpains are also involved with
myofibrillar protein disassembly and degradation, contributing
to loss of the Z disk (Busch et al., 1972). Increased calpain activity
in muscle occurs during periods of muscle reorganization and
restructuring (Dedieu et al., 2004), such as during weight loss and
rapid growth (Salem et al., 2005; Johnston et al., 2011; Salmerón
et al., 2015), therefore it is feasible that SNPs affecting calpain-
related proteolysis contributes to differences in muscle growth
capacity. Calpain-induced protein degradation is also associated
with post-mortem proteolysis so genetic variation in the calpain
system may result in differences in fillet quality (Koohmaraie,
1992; Delbarre-Ladrat et al., 2006).

CONCLUSIONS

The use of genomic information from the whole-genome
association analyses in this study increased the heritability and
accuracy of estimated breeding values for FY, suggesting that
genomic selection will be suitable for exploiting within-family
genetic variation and thus obtaining faster progress in selective
breeding for this trait. Only few windows were able to explain
more than 1% of the genetic variance of FY, FW, BW10, BW13,
and CAR, thus corroborating the polygenic nature of these traits.
Network visualization of the putative genes implicated in the
GWAS analyses indicated that differences in the ability of the fish
tomaintain a proliferative and renewable population ofmyogenic
precursor cells might be affecting the observed phenotypic and
genetic variance in growth rate and fillet yield in rainbow trout.
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