71 research outputs found

    Reaching out for signals: filopodia sense EGF and respond by directed retrograde transport of activated receptors

    Get PDF
    ErbB1 receptors situated on cellular filopodia undergo systematic retrograde transport after binding of the epidermal growth factor (EGF) and activation of the receptor tyrosine kinase. Specific inhibitors of the erbB1 receptor tyrosine kinase as well as cytochalasin D, a disruptor of the actin cytoskeleton, abolish transport but not free diffusion of the receptor–ligand complex. Diffusion constants and transport rates were determined with single molecule sensitivity by tracking receptors labeled with EGF conjugated to fluorescent quantum dots. Retrograde transport precedes receptor endocytosis, which occurs at the base of the filopodia. Initiation of transport requires the interaction and concerted activation of at least two liganded receptors and proceeds at a constant rate mediated by association with actin. These findings suggest a mechanism by which filopodia detect the presence and concentration of effector molecules far from the cell body and mediate cellular responses via directed transport of activated receptors

    Changes in Fluorescence Recovery After Photobleaching (FRAP) as an indicator of SOX9 transcription factor activity

    Get PDF
    Cells respond to their environment via an intricate cellular signaling network, directing cell fate. Changes in cell fate are characterized by changes in gene transcription, dictated by (master) transcription factor activity. SOX9 is the master transcription factor for chondrocyte development. Its impaired function is implicated in osteoarthritis and growth disorders, such as dwarfism. However, the factors regulating SOX9 transcriptional activity are not yet fully mapped. Current methods to study transcription factor activity are indirect and largely limited to quantification of SOX9 target gene and protein expression levels after several hours or days of stimulation, leading to poor temporal resolution. We used Fluorescence Recovery After Photobleaching (FRAP) to study the mobility of SOX9 and correlated the changes in mobility to changes in its transcriptional activity by cross-validating with chromatin immunoprecipitation and qPCR. We show that using FRAP, we can quantify the changes in SOX9 mobility on short time scales as an indication of transcriptional activity, which correlated to changes of SOX9 DNA-binding and long-term target gene expression

    Interleukin-4 Alters Early Phagosome Phenotype by Modulating Class I PI3K Dependent Lipid Remodeling and Protein Recruitment

    Get PDF
    Phagocytosis is a complex process that involves membranelipid remodeling and the attraction and retention of key effector proteins. Phagosome phenotype depends on the type of receptor engaged and can be influenced by extracellular signals. Interleukin 4 (IL-4) is a cytokine that induces the alternative activation of macrophages (MΦs) upon prolonged exposure, triggering a different cell phenotype that has an altered phagocytic capacity. In contrast, the direct effects of IL-4 during phagocytosis remain unknown. Here, we investigate the impact of short-term IL-4 exposure (1 hour) during phagocytosis of IgG-opsonized yeast particles by MΦs. By time-lapse confocal microscopy of GFP-tagged lipid-sensing probes, we show that IL-4 increases the negative charge of the phagosomal membrane by prolonging the presence of the negatively charged second messenger PI(3,4,5)P3. Biochemical assays reveal an enhanced PI3K/Akt activity upon phagocytosis in the presence of IL-4. Blocking the specific class I PI3K after the onset of phagocytosis completely abrogates the IL-4-induced changes in lipid remodeling and concomitant membrane charge. Finally, we show that IL-4 direct signaling leads to a significantly prolonged retention profile of the signaling molecules Rac1 and Rab5 to the phagosomal membrane in a PI3K-dependent manner. This protracted early phagosome phenotype suggests an altered maturation, which is supported by the delayed phagosome acidification measured in the presence of IL-4. Our findings reveal that molecular differences in IL-4 levels, in the extracellular microenvironment, influence the coordination of lipid remodeling and protein recruitment, which determine phagosome phenotype and, eventually, fate. Endosomal and phagosomal membranes provide topological constraints to signaling molecules. Therefore, changes in the phagosome phenotype modulated by extracellular factors may represent an additional mechanism that regulates the outcome of phagocytosis and could have significant impact on the net biochemical output of a cell

    Dynamic and static fluorescence anisotropy in biological microscopy (rFLIM and emFRET)

    Get PDF
    Fluorescence anisotropy, a measure of the polarization state of fluorescence emission, is a sensitive measure of molecular rotational motion and of resonance energy transfer (RET). We report here the formalism and application of dynamic and static fluorescence anisotropy measurements primarily intended for implementation in imaging systems. These include confocal lasre scanning microscopes (CLSM) as well as wide-field instruments, in the latter case adapted for anisotropy-based dynamic frequency domain fluorescence lifetime imaging microscopy (FLIM), a method we denote as rFLIM. Anisotropy RET is one of the modalities used for fluorescence RET (FRET) determinations of the association, and proximity of cellular proteins in vivo. A requirement is the existence of intrinsic or extrinsic probes exhibiting homotransfer FRET (in our nomenclature, energy migration or emFRET) between like fluorophores. This phenomenon is particularly useful in studies of the activation and processing of transmembrane receptor tyrosine kinases involved in signal transduction and expressed as fusions with Visible Fluorescence Proteins (VFPs).\u

    Sequential Superresolution Imaging of Multiple Targets Using a Single Fluorophore

    No full text
    <div><p>Fluorescence superresolution (SR) microscopy, or fluorescence nanoscopy, provides nanometer scale detail of cellular structures and allows for imaging of biological processes at the molecular level. Specific SR imaging methods, such as localization-based imaging, rely on stochastic transitions between on (fluorescent) and off (dark) states of fluorophores. Imaging multiple cellular structures using multi-color imaging is complicated and limited by the differing properties of various organic dyes including their fluorescent state duty cycle, photons per switching event, number of fluorescent cycles before irreversible photobleaching, and overall sensitivity to buffer conditions. In addition, multiple color imaging requires consideration of multiple optical paths or chromatic aberration that can lead to differential aberrations that are important at the nanometer scale. Here, we report a method for sequential labeling and imaging that allows for SR imaging of multiple targets using a single fluorophore with negligible cross-talk between images. Using brightfield image correlation to register and overlay multiple image acquisitions with ~10 nm overlay precision in the <i>x-y</i> imaging plane, we have exploited the optimal properties of AlexaFluor647 for dSTORM to image four distinct cellular proteins. We also visualize the changes in co-localization of the epidermal growth factor (EGF) receptor and clathrin upon EGF addition that are consistent with clathrin-mediated endocytosis. These results are the first to demonstrate sequential SR (s-SR) imaging using direct stochastic reconstruction microscopy (dSTORM), and this method for sequential imaging can be applied to any superresolution technique.</p></div
    • …
    corecore