20 research outputs found

    Microsomal prostaglandin E2 synthase-1 is induced by conditional expression of RET/PTC in thyroid PCCL3 cells through the activation of the MEK-ERK pathway

    Get PDF
    RET/PTC rearrangements are believed to be tumor-initiating events in papillary thyroid carcinomas. We identified microsomal prostaglandin E2 synthase-1 (mPGES-1) as a RET/PTC-inducible gene through subtraction hybridization cloning and expression profiling with custom microarrays. The inducible prostaglandin E2 (PGE2) biosynthetic enzymes cyclooxygenase-2 (COX-2) and mPGES-1 are up-regulated in many cancers. COX-2 is overexpressed in thyroid malignancies compared with benign nodules and normal thyroid tissues. Eicosanoids may promote tumorigenesis through effects on tumor cell growth, immune surveillance, and angiogenesis. Conditional RET/PTC1 or RET/PTC3 expression in PCCL3 thyroid cells markedly induced mPGES-1 and COX-2. PGE2 was the principal prostanoid and up-regulated (by approximately 60-fold), whereas hydroxyeicosatetraenoic acid metabolites were decreased, consistent with shunting of prostanoid biosynthesis toward PGE2 by coactivation of the two enzymes. RET/PTC activated mPGES-1 gene transcription. Based on experiments with kinase inhibitors, with PCCL3 cell lines with doxycycline-inducible expression of RET/PTC mutants with substitutions of critical tyrosine residues in the kinase domain, and lines with inducible expression of activated mutants of H-RAS and MEK1, RET/PTC was found to regulate mPGES-1 through Shc-RAS-MEK-ERK. These data show a direct relationship between activation of a tyrosine kinase receptor oncogene and regulation of PGE2 biosynthesis. As enzymes involved in prostanoid biosynthesis can be targeted with pharmacological inhibitors, these findings may have therapeutic implications

    Low demographic variability in wild primate populations: fitness impacts of variation, covariation, and serial correlation in vital rates. Am Nat 177: E14–28

    No full text
    abstract: In a stochastic environment, long-term fitness can be influenced by variation, covariation, and serial correlation in vital rates (survival and fertility). Yet no study of an animal population has parsed the contributions of these three aspects of variability to long-term fitness. We do so using a unique database that includes complete life-history information for wild-living individuals of seven primate species that have been the subjects of long-term (22-45 years) behavioral studies. Overall, the estimated levels of vital rate variation had only minor effects on long-term fitness, and the effects of vital rate covariation and serial correlation were even weaker. To explore why, we compared estimated variances of adult survival in primates with values for other vertebrates in the literature and found that adult survival is significantly less variable in primates than it is in the other vertebrates. Finally, we tested the prediction that adult survival, because it more strongly influences fitness in a constant environment, will be less variable than newborn survival, and we found only mixed support for the prediction. Our results suggest that wild primates may be buffered against detrimental fitness effects of environmental stochasticity by their highly developed cognitive abilities, social networks, and broad, flexible diets
    corecore