33 research outputs found

    The roles of calcium signaling and ERK1/2 phosphorylation in a Pax6(+/- )mouse model of epithelial wound-healing delay

    Get PDF
    BACKGROUND: Congenital aniridia caused by heterozygousity at the PAX6 locus is associated with ocular surface disease including keratopathy. It is not clear whether the keratopathy is a direct result of reduced PAX6 gene dosage in the cornea itself, or due to recurrent corneal trauma secondary to defects such as dry eye caused by loss of PAX6 in other tissues. We investigated the hypothesis that reducing Pax6 gene dosage leads to corneal wound-healing defects. and assayed the immediate molecular responses to wounding in wild-type and mutant corneal epithelial cells. RESULTS: Pax6(+/- )mouse corneal epithelia exhibited a 2-hour delay in their response to wounding, but subsequently the cells migrated normally to repair the wound. Both Pax6(+/+ )and Pax6(+/- )epithelia activated immediate wound-induced waves of intracellular calcium signaling. However, the intensity and speed of propagation of the calcium wave, mediated by release from intracellular stores, was reduced in Pax6(+/- )cells. Initiation and propagation of the calcium wave could be largely decoupled, and both phases of the calcium wave responses were required for wound healing. Wounded cells phosphorylated the extracellular signal-related kinases 1/2 (phospho-ERK1/2). ERK1/2 activation was shown to be required for rapid initiation of wound healing, but had only a minor effect on the rate of cell migration in a healing epithelial sheet. Addition of exogenous epidermal growth factor (EGF) to wounded Pax6(+/- )cells restored the calcium wave, increased ERK1/2 activation and restored the immediate healing response to wild-type levels. CONCLUSION: The study links Pax6 deficiency to a previously overlooked wound-healing delay. It demonstrates that defective calcium signaling in Pax6(+/- )cells underlies this delay, and shows that it can be pharmacologically corrected. ERK1/2 phosphorylation is required for the rapid initiation of wound healing. A model is presented whereby minor abrasions, which are quickly healed in normal corneas, transiently persist in aniridic patients, compromising the corneal stroma

    Interactions between anti-EGFR therapies and cytotoxic chemotherapy in oesophageal squamous cell carcinoma: why clinical trials might have failed and how they could succeed

    Get PDF
    Acknowledgements We thank Alice Savage for technical laboratory assistance. Funding The work undertaken was funded by Ninewells Cancer Campaign (Dundee) and Scottish Government Chief Scientist Office (Grant reference TCS/19/18).Peer reviewedPublisher PD

    Restricted growth of Schwann cells lacking Cajal bands slows conduction in myelinated nerves

    Get PDF
    Nerve impulses are propagated at nodes of Ranvier in the myelinated nerves of vertebrates. Internodal distances have been proposed to affect the velocity of nerve impulse conduction; however, direct evidence is lacking, and the cellular mechanisms that might regulate the length of the myelinated segments are unknown. Ramon y Cajal described longitudinal and transverse bands of cytoplasm or trabeculae in internodal Schwann cells and suggested that they had a nutritive function. Here we show that internodal growth in wild-type nerves is precisely matched to nerve extension, but disruption of the cytoplasmic bands in Periaxin-null mice impairs Schwann cell elongation during nerve growth. By contrast, myelination proceeds normally. The capacity of wild-type and mutant Schwann cells to elongate is cell-autonomous, indicating that passive stretching can account for the lengthening of the internode during limb growth. As predicted on theoretical grounds, decreased internodal distances strikingly decrease conduction velocities and so affect motor function.We propose that microtubule-based transport in the longitudinal bands of Cajal permits internodal Schwann cells to lengthen in response to axonal growth, thus ensuring rapid nerve impulse transmission

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Fifty major Philosophers a reference guide

    No full text

    Limapuluh filosof dunia yang menggerakkan

    No full text
    VIII, 249 p. : 25 cm
    corecore