116 research outputs found

    Interferon signaling patterns in peripheral blood lymphocytes may predict clinical outcome after high-dose interferon therapy in melanoma patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-dose Interferon (HDI) therapy produces a clinical response and achieves relapse-free survival in 20-33% of patients with operable high risk or metastatic melanoma. However, patients may develop significant side effects frequently necessitating dose reduction or discontinuation of therapy. We recently showed that peripheral blood lymphocytes (PBL) from some melanoma patients have impaired interferon (IFN) signaling which could be restored with high concentrations of IFN. This exploratory study evaluated IFN signaling in PBL of melanoma patients to assess whether the restoration of PBL IFN signaling may predict a beneficial effect for HDI in melanoma patients.</p> <p>Methods</p> <p>PBL from 14 melanoma patients harvested on Day 0 and Day 29 of neoadjuvant HDI induction therapy were analyzed using phosflow to assess their interferon signaling patterns through IFN-α induced phosphorylation of STAT1-Y701.</p> <p>Results</p> <p>Patients who had a clinical response to HDI showed a lower PBL interferon signaling capacity than non-responders at baseline (Day 0). Additionally, clinical responders and patients with good long-term outcome showed a significant increase in their PBL interferon signaling from Day 0 to Day 29 compared to clinical non-responders and patients that developed metastatic disease. The differences in STAT1 activation from pre- to post- HDI treatment could distinguish between patients who were inclined to have a favorable or unfavorable outcome.</p> <p>Conclusion</p> <p>While the sample size is small, these results suggest that interferon signaling patterns in PBL correlate with clinical responses and may predict clinical outcome after HDI in patients with melanoma. A larger confirmatory study is warranted, which may yield a novel approach to select patients for HDI therapy.</p

    Near-infrared spectroscopy as a predictor of clinical deterioration: a case report of two infants with duct-dependent congenital heart disease

    Get PDF
    Background: Some infants with congenital heart disease are at risk of in-hospital cardiac arrest. To better foresee cardiac arrest in infants with congenital heart disease, it might be useful to continuously assess end-organ perfusion. Near-infrared spectroscopy is a non-invasive method to continuously assess multisite regional tissue oxygen saturation. Case presentation: We report on two infants with duct-dependent congenital heart disease who demonstrated a gradual change in cerebral and/or renal tissue oxygen saturation before cardiopulmonary resuscitation was required. In both cases, other clinical parameters such as heart rate, arterial oxygen saturation and blood pressure did not indicate that deterioration was imminent. Conclusions: These two cases demonstrate that near-infrared spectroscopy might contribute to detecting a deteriorating clinical condition and might therefore be helpful in averting cardiopulmonary collapse and need for resuscitation in infants with congenital heart disease

    Evaluation of a community pharmacy-based intervention for improving patient adherence to antihypertensives: a randomised controlled trial

    Get PDF
    BackgroundThe majority of patients using antihypertensive medications fail to achieve their recommended target blood pressure. Poor daily adherence with medication regimens and a lack of persistence with medication use are two of the major reasons for failure to reach target blood pressure. There is no single intervention to improve adherence with antihypertensives that is consistently effective. Community pharmacists are in an ideal position to promote adherence to chronic medications. This study aims to test a specific intervention package that could be integrated into the community pharmacy workflow to enable pharmacists to improve patient adherence and/or persistence with antihypertensive medications - Hypertension Adherence Program in Pharmacy (HAPPY).Methods/DesignThe HAPPY trial is a multi-centre prospective randomised controlled trial. Fifty-six pharmacies have been recruited from three Australian states. To identify potential patients, a software application (MedeMine CVD) extracted data from a community pharmacy dispensing software system (FRED Dispense&reg;). The pharmacies have been randomised to either \u27Pharmacist Care Group\u27 (PCG) or \u27Usual Care Group\u27 (UCG). To check for \u27Hawthorne effect\u27 in the UCG, a third group of patients \u27Hidden Control Group\u27 (HCG) will be identified in the UCG pharmacies, which will be made known to the pharmacists at the end of six months. Each study group requires 182 patients. Data will be collected at baseline, three and six months in the PCG and at baseline and six months in the UCG. Changes in patient adherence and persistence at the end of six months will be measured using the self-reported Morisky score, the Tool for Adherence Behaviour Screening and medication refill data.DiscussionTo our knowledge, this is the first research testing a comprehensive package of evidence-based interventions that could be integrated into the community pharmacy workflow to enable pharmacists to improve patient adherence and/or persistence with antihypertensive medications. The unique features of the HAPPY trial include the use of MedeMine CVD to identify patients who could potentially benefit from the service, control for the \u27Hawthorne effect\u27 in the UCG and the offer of the intervention package at the end of six months to patients in the UCG, a strategy that is expected to improve retention.Trial RegistrationAustralian New Zealand Clinical Trial Registry ACTRN12609000705280<br /

    Re-imagining the future:repetition decreases hippocampal involvement in future simulation

    Get PDF
    Imagining or simulating future events has been shown to activate the anterior right hippocampus (RHC) more than remembering past events does. One fundamental difference between simulation and memory is that imagining future scenarios requires a more extensive constructive process than remembering past experiences does. Indeed, studies in which this constructive element is reduced or eliminated by “pre-imagining” events in a prior session do not report differential RHC activity during simulation. In this fMRI study, we examined the effects of repeatedly simulating an event on neural activity. During scanning, participants imagined 60 future events; each event was simulated three times. Activation in the RHC showed a significant linear decrease across repetitions, as did other neural regions typically associated with simulation. Importantly, such decreases in activation could not be explained by non-specific linear time-dependent effects, with no reductions in activity evident for the control task across similar time intervals. Moreover, the anterior RHC exhibited significant functional connectivity with the whole-brain network during the first, but not second and third simulations of future events. There was also evidence of a linear increase in activity across repetitions in right ventral precuneus, right posterior cingulate and left anterior prefrontal cortex, which may reflect source recognition and retrieval of internally generated contextual details. Overall, our findings demonstrate that repeatedly imagining future events has a decremental effect on activation of the hippocampus and many other regions engaged by the initial construction of the simulation, possibly reflecting the decreasing novelty of simulations across repetitions, and therefore is an important consideration in the design of future studies examining simulation

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore