519 research outputs found

    New insights into innate immune restriction of West Nile virus infection

    Get PDF
    West Nile virus (WNV) is an encephalitic flavivirus that has provided a valuable experimental system for studying viral pathogenesis and immunity. Although in vitro approaches and mouse models of infection have identified pattern recognition receptor and interferon pathways that control WNV infection, our appreciation of specific antiviral effectors has been more limited. In this review, we highlight recent advances in our understanding of the host factors that restrict WNV infection in mammals and insects, especially those resulting from large-scale screening approaches

    Shared and Distinct Functions of Type I and Type III Interferons

    Get PDF
    Type I interferons (IFNs) (IFN-α, IFN-β) and type III IFNs (IFN-λ) share many properties, including induction by viral infection, activation of shared signaling pathways, and transcriptional programs. However, recent discoveries have revealed context-specific functional differences. Here, we provide a comprehensive review of type I and type III IFN activities, highlighting shared and distinct features from molecular mechanisms through physiological responses. Beyond discussing canonical antiviral functions, we consider the adaptive immune priming, anti-tumor, and autoimmune functions of IFNs. We discuss a model wherein type III IFNs serve as a front-line defense that controls infection at epithelial barriers while minimizing damaging inflammatory responses, reserving the more potent type I IFN response for when local responses are insufficient. In this context, we discuss current therapeutic applications targeting these cytokine pathways and highlight gaps in understanding of the biology of type I and type III IFNs in health and disease

    Selective blockade of Interferon-α and -β reveals their non-redundant functions in a mouse model of West Nile virus infection

    Get PDF
    Although type I interferons (IFNs) were first described almost 60 years ago, the ability to monitor and modulate the functional activities of the individual IFN subtypes that comprise this family has been hindered by a lack of reagents. The major type I IFNs, IFN-β and the multiple subtypes of IFN-α, are expressed widely and induce their effects on cells by interacting with a shared heterodimeric receptor (IFNAR). In the mouse, the physiologic actions of IFN-α and IFN-β have been defined using polyclonal anti-type I IFN sera, by targeting IFNAR using monoclonal antibodies or knockout mice, or using Ifnb-/- mice. However, the corresponding analysis of IFN-α has been difficult because of its polygenic nature. Herein, we describe two monoclonal antibodies (mAbs) that differentially neutralize murine IFN-β or multiple subtypes of murine IFN-α. Using these mAbs, we distinguish specific contributions of IFN-β versus IFN-α in restricting viral pathogenesis and identify IFN-α as the key mediator of the antiviral response in mice infected with West Nile virus. This study thus suggests the utility of these new reagents in dissecting the antiviral and immunomodulatory roles of IFN-β versus IFN-α in murine models of infection, immunity, and autoimmunity

    Interferon regulatory factor-1 (irf-1) shapes both innate and cd8 + t cell immune responses against west nile virus infection

    Get PDF
    Interferon regulatory factor (IRF)-1 is an immunomodulatory transcription factor that functions downstream of pathogen recognition receptor signaling and has been implicated as a regulator of type I interferon (IFN)-αβ expression and the immune response to virus infections. However, this role for IRF-1 remains controversial because altered type I IFN responses have not been systemically observed in IRF-1 -/- mice. To evaluate the relationship of IRF-1 and immune regulation, we assessed West Nile virus (WNV) infectivity and the host response in IRF-1 -/- cells and mice. IRF-1 -/- mice were highly vulnerable to WNV infection with enhanced viral replication in peripheral tissues and rapid dissemination into the central nervous system. Ex vivo analysis revealed a cell-type specific antiviral role as IRF-1 -/- macrophages supported enhanced WNV replication but infection was unaltered in IRF-1 -/- fibroblasts. IRF-1 also had an independent and paradoxical effect on CD8 + T cell expansion. Although markedly fewer CD8 + T cells were observed in naïve animals as described previously, remarkably, IRF-1 -/- mice rapidly expanded their pool of WNV-specific cytolytic CD8 + T cells. Adoptive transfer and in vitro proliferation experiments established both cell-intrinsic and cell-extrinsic effects of IRF-1 on the expansion of CD8 + T cells. Thus, IRF-1 restricts WNV infection by modulating the expression of innate antiviral effector molecules while shaping the antigen-specific CD8 + T cell response

    Interferon-λ cures persistent murine norovirus infection in the absence of adaptive immunity

    Get PDF
    Norovirus gastroenteritis is amajor public health burden worldwide. Although fecal shedding is important for transmission of enteric viruses, little is known about the immune factors that restrict persistent enteric infection. We report here that although the cytokines interferon-α (IFN-α) and IFN-β prevented the systemic spread of murine norovirus (MNoV), only IFN-λcontrolled persistent enteric infection. Infection-dependent induction of IFN-λ was governed by the MNoV capsid protein and correlated with diminished enteric persistence. Treatment of established infection with IFN-λ cured mice in a manner requiring nonhematopoietic cell expression of the IFN-λ receptor, Ifnlr1, and independent of adaptive immunity. These results suggest the therapeutic potential of IFN-λ for curing virus infections in the gastrointestinal tract

    Considering innate immune responses in SARS-CoV-2 infection and COVID-19

    Get PDF
    During the COVID-19 pandemic, much of the media focus has been on adaptive immunity, particularly antibody levels and memory T cells. However, immunologists have been striving to decipher how SARS-CoV-2 infection impacts our first line of defence, namely the innate immune system. In early 2022, Program staff from the NIAID at the NIH organized a workshop focusing on the innate immune response to SARS-CoV-2 infection and during COVID-19, which was chaired by Ralph Baric, Jenny Ting and John Lambris. Following the meeting, Nature Reviews Immunology invited some of the organizers and speakers to share their thoughts on the key discussion points

    Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier

    Get PDF
    Although interferon-λ [also known as type III interferon or interleukin-28 (IL-28)/IL-29] restricts infection by several viruses, its inhibitory mechanism has remained uncertain. We used recombinant interferon-λ and mice lacking the interferon-λ receptor (IFNLR1) to evaluate the effect of interferon-λ on infection with West Nile virus, an encephalitic flavivirus. Cell culture studies in mouse keratinocytes and dendritic cells showed no direct antiviral effect of exogenous interferon-λ, even though expression of interferon-stimulated genes was induced. We observed no differences in West Nile virus burden between wild-type and Ifnlr1-/- mice in the draining lymph nodes, spleen, or blood. We detected increased West Nile virus infection in the brain and spinal cord of Ifnlr1-/- mice, yet this was not associated with a direct antiviral effect in mouse neurons. Instead, we observed an increase in blood-brain barrier permeability in Ifnlr1-/- mice. Treatment of mice with pegylated interferon-λ2 resulted in decreased blood-brain barrier permeability, reduced West Nile virus infection in the brain without affecting viremia, and improved survival against lethal virus challenge. An in vitro model of the blood-brain barrier showed that interferon-λ signaling in mouse brain microvascular endothelial cells increased transendothelial electrical resistance, decreased virus movement across the barrier, and modulated tight junction protein localization in a protein synthesis- and signal transducer and activator of transcription 1 (STAT1)-independent manner. Our data establish an indirect antiviral function of interferon-λ in which noncanonical signaling through IFNLR1 tightens the blood-brain barrier and restricts viral neuroinvasion and pathogenesis

    IRF-3, IRF-5, and IRF-7 Coordinately Regulate the Type I IFN Response in Myeloid Dendritic Cells Downstream of MAVS Signaling

    Get PDF
    Although the transcription factors IRF-3 and IRF-7 are considered master regulators of type I interferon (IFN) induction and IFN stimulated gene (ISG) expression, Irf3-/-×Irf7-/- double knockout (DKO) myeloid dendritic cells (mDC) produce relatively normal levels of IFN-β after viral infection. We generated Irf3-/-×Irf5-/-×Irf7-/- triple knockout (TKO) mice to test whether IRF-5 was the source of the residual induction of IFN-β and ISGs in mDCs. In pathogenesis studies with two unrelated positive-sense RNA viruses (West Nile virus (WNV) and murine norovirus), TKO mice succumbed at rates greater than DKO mice and equal to or approaching those of mice lacking the type I IFN receptor (Ifnar-/-). In ex vivo studies, after WNV infection or exposure to Toll-like receptor agonists, TKO mDCs failed to produce IFN-β or express ISGs. In contrast, this response was sustained in TKO macrophages following WNV infection. To define IRF-regulated gene signatures, we performed microarray analysis on WNV-infected mDC from wild type (WT), DKO, TKO, or Ifnar-/- mice, as well as from mice lacking the RIG-I like receptor adaptor protein MAVS. Whereas the gene induction pattern in DKO mDC was similar to WT cells, remarkably, almost no ISG induction was detected in TKO or Mavs-/- mDC. The relative equivalence of TKO and Mavs-/- responses suggested that MAVS dominantly regulates ISG induction in mDC. Moreover, we showed that MAVS-dependent induction of ISGs can occur through an IRF-5-dependent yet IRF-3 and IRF-7-independent pathway. Our results establish IRF-3, -5, and -7 as the key transcription factors responsible for mediating the type I IFN and ISG response in mDC during WNV infection and suggest a novel signaling link between MAVS and IRF-5
    corecore