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Abstract

Norovirus gastroenteritis is a major public health burden worldwide. Although fecal shedding is 

important for transmission of enteric viruses, little is known about the immune factors that restrict 

persistent enteric infection. We report here that while the cytokines interferon-α (IFN-α) and IFN-

β prevented the systemic spread of murine norovirus (MNoV), only IFN-λ controlled persistent 

enteric infection. Infection-dependent induction of IFN-λ was governed by the MNoV capsid 

protein and correlated with diminished enteric persistence. Treatment of established infection with 

IFN-λ cured mice in a manner requiring non-hematopoietic cell expression of the IFN-λ receptor, 

Ifnlr1, and independent of adaptive immunity. These results suggest the therapeutic potential of 

IFN-λ for curing virus infections in the gastrointestinal tract.

Human noroviruses (HNoVs) are a leading cause of gastroenteritis worldwide (1, 2). 

Asymptomatic fecal shedding of HNoVs may be important epidemiologically by providing a 

reservoir between outbreaks (1, 3–9). Some strains of murine norovirus (MNoV) also 

establish persistent enteric infection, providing a model for analyzing mechanisms of enteric 

NoV persistence and immunity in a natural host (1, 10, 11). Interferons (IFNs) are critical 

for control of both murine and human NoV replication (12–18). IFN-α and IFN-β (also 

called Type I IFNs and hereafter IFN-αβ), IFN-γ (also called Type II IFN) and IFN-λ (also 

called Type III IFN or interleukin 28/9) signal through the distinct heterodimeric receptors 

Ifnar1/Ifnar2, Ifngr1/Ifngr2 and Ifnlr1/Il10rb, to regulate gene expression through 

phosphorylation of Stat proteins (19, 20). Although the roles of IFNs in control of persistent 
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enteric infection have not been elucidated, it is of interest that IFN-λ, but not IFN-αβ, is 

important for control of acute rotavirus infection in the intestine of mice (21).

To define the role of IFNs in MNoV enteric persistence, we measured levels of the 

persistent MNoV strain CR6 in different tissues and in feces after oral inoculation of control 

mice and mice deficient in Ifnar1, Ifnlr1, Ifngr1, or Stat1 (Fig. 1) (also see supplementary 

materials and methods). As expected, Ifnar1 and Stat1 were important for limiting 

replication in the spleen and mesenteric lymph node (MLN) (12, 13, 16, 17), whereas Stat1 

rather than Ifnar1 controlled levels of replication in the colon (Fig. 1A) suggesting that IFN-

αβ responses did not explain Stat1-dependent control of replication in the intestine. 

Consistent with this, comparison of the requirement for each IFN receptor in control of fecal 

shedding revealed that only Stat1 and Ifnlr1 limited levels of fecal shedding of MNoV (Fig. 

1B). Furthermore, we observed increased fecal shedding compared to controls in Ifnlr1−/− 

but not Ifnar1−/−mice over 35 days of infection (Fig. 1C).

To define the basis for the intestine-specific role of IFN-λ in control of enteric persistence, 

we inoculated mice with the persistent MNoV strain CR6 or the non-persistent MNoV strain 

CW3 and compared viral replication and induction of IFN-λ and IFN-β in Peyer’s patches, 

mesenteric lymph nodes (MLNs), and the colon. As expected, CW3 replicated preferentially 

in MLN, CR6 and CW3 replicated equivalently in Peyer's patches, and CR6 replicated 

preferentially in colon (fig. S1) (11, 22). CW3 induced both IFN-β and IFN-λ (Fig. 2, A and 

B) in MLN and Peyer's patches. In contrast, CR6 did not induce detectable IFN-β or IFN-λ 

mRNA in any organ despite the high level of replication in the intestine (Fig. 2, A and B). 

Both strains induced equivalent amounts of IFN-β from bone marrow-derived dendritic cells 

(BMDCs) in vitro (fig. S2). The capacity of strain CW3 to infect systemic organs maps to 

the protruding domain of the viral capsid protein (11, 22), whereas a single coding change 

(Asp94→Glu94, hereafter D94E) in the NS1–2 protein confers the capacity for enteric 

persistence upon CW3 (11, 23). In chimeric viruses, the presence of the entire CW3 capsid 

gene or the protruding domain of the CW3 capsid gene correlated with IFN-β and IFN-λ 

induction (fig. S3, A to F). Furthermore, in CW3-derived viruses carrying the NS1–2 D94E 

mutation that confers persistence (CW3D94E), the presence of the CR6 capsid lessened IFN-

β and IFN-λ induction in MLNs despite similar levels of viral replication (Fig. 2C). This 

phenotype allowed us to use a chimeric virus to test the hypothesis that IFN-λ responses are 

required for prevention of persistence. The CW3D94E strain is capable of efficiently 

establishing enteric persistence only at low doses (fig. S4). When control mice were 

inoculated with a high dose of CW3D94E, many mice failed to establish persistence (fig. S4 

and Fig. 2D). This failure of CW3D94E to persist was rescued by either the CR6 capsid 

protein, which is associated with diminished IFN-β and IFN-λ responses (fig. S4), or by 

infection of Ifnlr1−/− mice (Fig. 2D). Persistence of parental CW3, lacking intestinal tropism 

conferred by the D94E mutation, was not rescued in Ifnlr1−/− mice (fig. S5). These data 

indicate that induction of IFN-λ interferes with the establishment of enteric MNoV 

persistence.

These findings suggested a primary role for IFN-λ in control of enteric MNoV persistence. 

Consistent with this, intraperitoneal treatment of mice with IFN-λ 1 day after oral 

inoculation with CR6 prevented persistent enteric MNoV infection (Fig. 3A). When cured 
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mice were re-challenged with CR6 2 weeks later, persistent infection was established (Fig. 

3B), indicating that IFN-λ acted by stimulating innate immunity rather than promoting 

adaptive immunity. These data also indicate that therapeutic levels of IFN-λ wane in animals 

within 2 weeks of administration.

To determine if therapeutic IFN-λ was effective against established persistent infection, we 

treated mice with IFN-λ at 21, 23 and 25 days after oral inoculation with CR6, a time at 

which stable enteric persistence is established (11). Shedding of virus into the feces was 

reduced ~100-fold within 2 days, and was undetectable within 1 week (Fig. 3C). Analysis of 

viral genomes in tissues 2 weeks after IFN-λ treatment revealed reduced or undetectable 

levels of virus in the MLN and undetectable virus levels in the colon (fig. S6). As little as a 

single 1-µg dose of IFN-λ was sufficient to clear persistent MNoV (fig. S7A). Ifnlr1 was 

required for IFN-λ activity whereas Ifnar1 was dispensable (Fig. 3C and fig. S6) indicating 

that IFN-λ does not require IFN-αβ signaling to eliminate enteric persistence.

Whereas MNoV is known to replicate in immune cells, attempts to cultivate MNoV or 

HNoV in epithelial cells have not been successful (1, 24). Treatment of cultured BMDCs 

with IFN-β, but not IFN-λ, inhibited MNoV replication (Fig. 4A). Taken together with 

previously published data (21, 25–27), this result raised the possibility that IFN-λ acts on 

nonhematopoietic cells to control enteric persistence. Experiments in reciprocal bone 

marrow chimeras revealed that the control of fecal MNoV levels (Fig. 4B) and the capacity 

for IFN-λ to cure enteric persistence (Fig. 4C) mapped to the nonhematopoietic rather than 

radiation-sensitive hematopoietic cells. These data were consistent with an Ifnar1-

independent effect of IFN-λ on enteric persistence through stimulation of immunity via 

signaling in radiation-insensitive cells.

Despite the capacity of mice to mount protective adaptive immune responses to MNoV 

infection (28, 29), their susceptibility of mice to reinfection after treatment with IFN-λ (Fig. 

3B) suggested that IFN-λ might act preferentially through the innate immune system. 

However, it is generally thought that in mammals, viral clearance requires adaptive B and T 

cell immunity. To test whether IFN-λ can clear established infection in the absence of an 

adaptive immune response, we inoculated Rag1−/− mice with CR6 and 21 days later treated 

with a single dose of IFN-λ. Enteric persistence of CR6 was cured by IFN-λ treatment of 

both control and Rag1−/− mice (Fig. 4D). All Rag1−/− mice and the majority of control mice 

remained MNoV-free for 35 days following treatment, well after therapeutic levels of IFN-λ 

waned (Fig. 3B). The absence of infectious MNoV was confirmed by fecal transplantation 

from IFN-λ-cleared Rag1−/− mice to naïve Rag1−/−or Stat1−/− mice (fig. S7, B and C). 

Together, these data demonstrate that IFN-λ treatment both prevents and cures established 

enteric persistence of MNoV in the absence of an adaptive immune response.

Our study establishes the importance of IFN-λ in innate immunity to persistent enteric viral 

infection. Establishment of persistent enteric infection by certain strains of MNoV was 

related to failure to induce IFN-λ responses. Whereas MNoV replicates in hematopoietic 

cells, IFN-λ was found to act on nonhematopoietic cells, suggesting that the mechanism of 

action is indirect. The efficacy of IFN-λ in prevention and cure of enteric persistence did not 

require adaptive immunity. These findings provide a different view of the immune system 
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because it is generally believed that the development of an adaptive immune response is 

required for clearance of viral infection by antigen-specific targeting. One implication of our 

findings is that immune therapies may be able to control persistent virus infection regardless 

of their effects on adaptive immune responses. We propose this is an example of sterilizing 

innate immunity wherein viral clearance can be determined by immune responses apart from 

adaptive immunity. A similar observation of viral clearance by an independent mechanism 

of a second enteric virus, rotavirus, supports the existence of sterilizing innate immunity 

(30). Analogously, metazoan organisms lacking adaptive immune systems likely are capable 

of clearing some pathogens and preventing persistent infection. We speculate that 

evolutionarily conserved innate immune mechanisms with sterilizing potential exist, perhaps 

with particular importance in protection against persistent infection at mucosal surfaces such 

as the intestine.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Systemic and intestinal persistence of MNoV are controlled by IFN-αβ and IFN-λ 
respectively
Mice were orally inoculated with 106 plaque-forming units (PFU) of MNoV strain CR6 and 

genome copies in the indicated tissue (A) or feces (B and C) were quantitated by 

quantitative reverse transcription polymerase chain reaction (qRT-PCR). Genome copies 

were compared between control, Stat1−/− and Ifnar1−/− mice at day 21 in tissues (A); 

between control, Stat1−/−, Ifngr1−/−, Ifnar1−/−, Ifnlr1−/−, and Ifnar1−/− × Ifngr1−/− mice at 

day 14 in feces (B); and between control, Ifnar1−/−, and Ifnlr1−/− over time in feces (C). 
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Data shown are pooled from at least two independent experiments with each point 

representing an individual animal in (A) and (B). Points in (C) represent at least four 

animals pooled from two to four independent experiments. Dashed line represents limit of 

detection. Statistical significance determined by one-way (A and B) or two-way (C) analysis 

of variance (ANOVA). n.s., not significant (P > 0.05); *P ≤ 0.05, **P ≤ 0.01, *** P ≤ 

0.001, ****P ≤ 0.0001. Error bars in (C) denote SD.
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Figure 2. Induction of IFN-λ prevents enteric NoV persistence
(A and B) Control mice were orally inoculated with 106 PFU of either MNoV CW3 or CR6, 

and total RNA was isolated from MLN, Peyer’s patches, or colon at the indicated times. 

Relative copy numbers for IFN-β transcripts (A) and IFN-λ transcripts (B) were quantified 

by qRT-PCR. (C) MNoV genomes, IFN-β transcripts and IFN-λ transcripts in MLNs 48 

hours after inoculation were compared between mice infected with CW3D94E containing 

either the CW3 or CR6 capsid gene. (D) MNoV genomes in feces from control or Ifnlr1−/− 

mice were measured at day 21 after inoculation with 106 PFU of CW3D94E. Data in (A) to 
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(C) are pooled from three independent experiments for a total of three to four mice per time 

point. Data points in (D) are individual mice pooled from three independent experiments. 

Dashed lines represent limit of detection. Statistical significance determined by two-way 

ANOVA (A and B) or Mann-Whitney test (C and D). n.s., not significant (P > 0.05); *P ≤ 

0.05, **P ≤ 0.01, *** P ≤ 0.001, ****P ≤ 0.0001. Error bars in (A) and (B) denote SD.
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Figure 3. IFN-λ treatment prevents and cures persistent enteric MNoV infection
(A to C) Feces were collected at the indicated day after oral inoculation and MNoV 

genomes were quantified by qRT-PCR. (A) Mice were injected with 25 µg of IFN-λ or 

phosphate-buffered saline (PBS) intraperitoneally 1 day after oral inoculation with 106 PFUs 

of CR6. (B) The IFN-λ-treated mice from (A) were rechallenged with 106 PFUs of CR6 at 

day 14 after initial infection. (C) Persistent infection with CR6 was established in control, 

Ifnar1−/−, or Ifnlr1−/−mice followed by intraperitoneal injection of 25 µg of IFN-λ on days 

21, 23, and 25. Data shown are pooled from two (A) or three (B and C) independent 

experiments for a total of four to eight mice per time point. Dashed lines represent limit of 

detection. Statistical significance was determined by two-way ANOVA. n.s., not significant 

(P > 0.05); *P ≤ 0.05, **P ≤ 0.01, *** P ≤ 0.001, ****P ≤ 0.0001. Error bars in (A) and (B) 

denote SD and in (C) denote SEM.
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Figure 4. IFN-λ durably clears enteric MNoV persistence through effects on radiation-insensitive 
cells in the absence of adaptive immunity
(A) BMDCs were treated with media, 100 IU/mL IFN-β, or 100 ng/mL IFN-λ for 24 hours, 

then inoculated with CR6 at a multiplicity of infection of five, and viral titers were 

determined by plaque assay 12 hours later. Data are pooled from three independent 

experiments performed in triplicate and normalized to untreated. (B and C) Bone marrow 

chimeras were generated using control and Ifnlr1−/− donor and recipient mice as indicated 

and 8 to 10 weeks later were orally inoculated with 106 PFUs of CR6. (B) MNoV shedding 
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in feces was quantified on day 14. (C) A single 25-µg dose of IFN-λ or PBS was 

administered intraperitoneally 21 days after inoculation and MNoV shedding was quantified 

on day 23. Data in (B) and (C) are pooled from two independent experiments and shown as 

individual mice. (D) Control or Rag1−/− mice orally inoculated with CR6 were treated 21 

days later with a single 25-µg dose of IFN-λ. Shedding was monitored for 35 days 

postinjection. Dashed lines in (B) to (D) represent limit of detection. Statistical significance 

was determined by one-way (B) or two-way (A, C, D) ANOVA. n.s., not significant (P > 

0.05); *P ≤ 0.05, **P ≤ 0.01, *** P ≤ 0.001, ****P ≤ 0.0001. Error bars in (A) denote SEM 

and in (D) denote SD.
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