27 research outputs found

    Presence of pathogenic Escherichia coli is correlated with bacterial community diversity and composition on pre-harvest cattle hides

    Get PDF
    Citation: Chopyk, J., Moore, R. M., DiSpirito, Z., Stromberg, Z. R., Lewis, G. L., Renter, D. G., . . . Wommack, K. E. (2016). Presence of pathogenic Escherichia coli is correlated with bacterial community diversity and composition on pre-harvest cattle hides. Microbiome, 4, 11. doi:10.1186/s40168-016-0155-4Background: Since 1982, specific serotypes of Shiga toxin-producing Escherichia coli (STEC) have been recognized as significant foodborne pathogens acquired from contaminated beef and, more recently, other food products. Cattle are the major reservoir hosts of these organisms, and while there have been advancements in food safety practices and industry standards, STEC still remains prevalent within beef cattle operations with cattle hides implicated as major sources of carcass contamination. To investigate whether the composition of hide-specific microbial communities are associated with STEC prevalence, 16S ribosomal RNA (rRNA) bacterial community profiles were obtained from hide and fecal samples collected from a large commercial feedlot over a 3-month period. These community data were examined amidst an extensive collection of prevalence data on a subgroup of STEC that cause illness in humans, referred to as enterohemorrhagic E. coli (EHEC). Fecal 16S rRNA gene OTUs (operational taxonomic units) were subtracted from the OTUs found within each hide 16S rRNA amplicon library to identify hide-specific bacterial populations. Results: Comparative analysis of alpha diversity revealed a significant correlation between low bacterial diversity and samples positive for the presence of E. coli O157:H7 and/or the non-O157 groups: O26, O111, O103, O121, O45, and O145. This trend occurred regardless of diversity metric or fecal OTU presence. The number of EHEC serogroups present in the samples had a compounding effect on the inverse relationship between pathogen presence and bacterial diversity. Beta diversity data showed differences in bacterial community composition between samples containing O157 and non-O157 populations, with certain OTUs demonstrating significant changes in relative abundance. Conclusions: The cumulative prevalence of the targeted EHEC serogroups was correlated with low bacterial community diversity on pre-harvest cattle hides. Understanding the relationship between indigenous hide bacterial communities and populations may provide strategies to limit EHEC in cattle and provide biomarkers for EHEC risk assessment

    Immune cell-derived cytokines contribute to obesity-related inflammation, fibrogenesis and metabolic deregulation in human adipose tissue

    No full text
    International audienceAdipose tissue contains a variety of immune cells, which vary in abundance and phenotype with obesity. The contribution of immune cell-derived factors to inflammatory, fibrotic and metabolic alterations in adipose tissue is not well established in human obesity. Human primary adipose tissue cells, including pre-adipocytes, endothelial cells and mature adipocytes, were used to investigate deregulation of cell-and pathway-specific gene profiles. Among factors known to alter adipose tissue biology, we focus on inflammatory (IL-1β and IL-17) and pro-fibrotic (TGF-β1) factors. rIL-1β and rIL-17 induced concordant pro-inflammatory transcriptional programs in pre-adipocytes and endothelial cells, with a markedly more potent effect of IL-1β than IL-17. None of these cytokines had significant effect on fibrogenesis-related gene expression, contrasting with rTGF-β1-induced up-regulation of extracellular matrix components and pro-fibrotic factors. In mature adipocytes, all three factors promoted down-regulation of genes functionally involved in lipid storage and release. IL-1β and IL-17 impacted adipocyte metabolic genes in relation with their respective pro-inflammatory capacity, while the effect of TGF-β1 occurred in face of an anti-inflammatory signature. These data revealed that IL-1β and IL-17 had virtually no effect on pro-fibrotic alterations but promote inflammation and metabolic dysfunction in human adipose tissue, with a prominent role for IL-1β

    Carbon source regulation of gene expression in Methylosinus trichosporium OB3b

    No full text
    Gene expression in methanotrophs has been shown to be affected by the availability of a variety of metals, most notably copper regulating expression of alternative forms of methane monooxygenase. Here, we show that growth substrate also affects expression of genes encoding for enzymes responsible for the oxidation of methane to formaldehyde and the assimilation of carbon. Specifically, in Methylosinus trichosporium OB3b, expression of genes involved in the conversion of methane to methanol (pmoA and mmoX) and methanol to formaldehyde (mxaF, xoxF1, and xoxF2) as well as in carbon assimilation (fae1, fae2, metF, and sga) decreased when this strain was grown on methanol vs. methane, indicating that methanotrophs manipulate gene expression in response to growth substrate as well as the availability of copper. Interestingly, growth of M. trichosporium OB3b on methane vs. methanol was similar despite such large changes in gene expression. Finally, methanol-grown cultures of M. trichosporium OB3b also exhibited the “copper-switch.” That is, expression of pmoA increased and mmoX decreased in the presence of copper, indicating that copper still controlled the expression of alternative forms of methane monooxygenase in M. trichosporium OB3b even though methane was not provided. Such findings indicate that methanotrophs can sense and respond to multiple environmental parameters simultaneously

    Bacterial cytosolic proteins with a high capacity for Cu(I) that protect against copper toxicity

    No full text
    Bacteria are thought to avoid using the essential metal ion copper in their cytosol due to its toxicity. Herein we characterize Csp3, the cytosolic member of a new family of bacterial copper storage proteins from Methylosinus trichosporium OB3b and Bacillus subtilis. These tetrameric proteins possess a large number of Cys residues that point into the cores of their four-helix bundle monomers. The Csp3 tetramers can bind a maximum of approximately 80 Cu(I) ions, mainly via thiolate groups, with average affinities in the (1–2) × 10(17) M(−1) range. Cu(I) removal from these Csp3s by higher affinity potential physiological partners and small-molecule ligands is very slow, which is unexpected for a metal-storage protein. In vivo data demonstrate that Csp3s prevent toxicity caused by the presence of excess copper. Furthermore, bacteria expressing Csp3 accumulate copper and are able to safely maintain large quantities of this metal ion in their cytosol. This suggests a requirement for storing copper in this compartment of Csp3-producing bacteria

    Membrane-Associated Quinoprotein Formaldehyde Dehydrogenase from Methylococcus capsulatus Bath

    No full text
    A membrane-associated, dye-linked formaldehyde dehydrogenase (DL-FalDH) was isolated from the obligate methylotroph Methylococcus capsulatus Bath. The enzyme was the major formaldehyde-oxidizing enzyme in cells cultured in high (above 1 μmol of Cu per mg of cell protein) copper medium and expressing the membrane-associated methane monooxygenase. Soluble NAD(P)(+)-linked formaldehyde oxidation was the major activity in cells cultured in low-copper medium and expressing the soluble methane monooxygenase (Tate and Dalton, Microbiology 145:159–167, 1999; Vorholt et al., J. Bacteriol. 180:5351–5356, 1998). The membrane-associated enzyme is a homotetramer with a subunit molecular mass of 49,500 Da. UV-visible absorption, electron paramagnetic resonance, and electrospray mass spectrometry suggest the redox cofactor of the DL-FalDH is pyrroloquinoline quinone (PQQ), with a PQQ-to-subunit stochiometry of approximately 1:1. The enzyme was specific for formaldehyde, oxidizing formaldehyde to formate, and utilized the cytochrome b(559/569) complex as the physiological electron acceptor
    corecore