332 research outputs found

    Design, Participation, and Social Change: What Design in Grassroots Spaces Can Teach Learning Scientists

    Get PDF
    hile a science of design (and theory of learning) is certainly useful in design-based research, a participatory design research framework presents an opening for learning scientists to rethink design and learning as processes. Grounded in the autoethnographic investigation of a grassroots organization\u27s design of a local campaign, the author traces the successive transformations of design artifacts, delineating a narrative character to design within grassroots spaces. One major lesson is that centering the question of participation is not just about including historically marginalized peoples at the core of design; it has the potential to “desettle” projects at a fundamental level, challenging dominant epistemologies that inform the practices of learning scientists, and thus transforming the field in ways that have yet to be systematically explored. More broadly, this study highlights the need for future research on design practices as they take form within understudied spaces, such as grassroots organizations

    Diffusion and Transport Coefficients in Synthetic Opals

    Full text link
    Opals are structures composed of the closed packing of spheres in the size range of nano-to-micro meter. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the termal and electrical conductivity makes possible to estimate the transport coefficients of opal structures. We estimate this changes as function of the neck size and the mean-free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures.Comment: Submitted to PR

    Spatial and seasonal differences in the top predators of Easter Island: Essential data for implementing the new Rapa Nui multiple‐uses marine protected area

    Get PDF
    Reef fishes are an important component of marine biodiversity, and changes in the composition of the assemblage structure may indicate ecological, climatic, or anthropogenic disturbances. To examine spatial differences in the reef fish assemblage structure around Easter Island, eight sites were sampled during autumn and summer 2016–2017 with baited remote underwater video systems. To determine seasonal changes, quarterly (seasonal) sampling was conducted at five of those eight sites. Fifteen pelagic species of fishes were recorded during this study, some of which have not previously been recorded in scuba surveys, including the Galapagos shark (Carcharhinus galapagensis, Snodgrass & Heller, 1905) and tunas (Scrombidae). Significant spatial and seasonal differences were found in the fish assemblage. Fish assemblages from the south coast differed significantly from those along the west and east coasts, mainly due to the occurrence of top predators. Winter differed from other seasons, especially along the south coast where the island is more exposed to large oceanic swells and winds from Antarctica. Owing to the variety and high relative abundance of species recorded during this survey, baited remote underwater video systems seemed to be an effective method for studying top predators at Easter Island. The identification of priority zones for the protection of top predator species represents an important contribution of this study, in order to develop management and conservation strategies to be implemented in the newly created Rapa Nui multiple uses coastal marine protected areas

    Discovery (theoretical prediction and experimental observation) of a large-gap topological-insulator class with spin-polarized single-Dirac-cone on the surface

    Get PDF
    Recent theories and experiments have suggested that strong spin-orbit coupling effects in certain band insulators can give rise to a new phase of quantum matter, the so-called topological insulator, which can show macroscopic entanglement effects. Such systems feature two-dimensional surface states whose electrodynamic properties are described not by the conventional Maxwell equations but rather by an attached axion field, originally proposed to describe strongly interacting particles. It has been proposed that a topological insulator with a single spin-textured Dirac cone interfaced with a superconductor can form the most elementary unit for performing fault-tolerant quantum computation. Here we present an angle-resolved photoemission spectroscopy study and first-principle theoretical calculation-predictions that reveal the first observation of such a topological state of matter featuring a single-surface-Dirac-cone realized in the naturally occurring Bi2_2Se3_3 class of materials. Our results, supported by our theoretical predictions and calculations, demonstrate that undoped compound of this class of materials can serve as the parent matrix compound for the long-sought topological device where in-plane surface carrier transport would have a purely quantum topological origin. Our study further suggests that the undoped compound reached via n-to-p doping should show topological transport phenomena even at room temperature.Comment: 3 Figures, 18 pages, Submitted to NATURE PHYSICS in December 200

    Giant Thermoelectric Effect from Transmission Supernodes

    Full text link
    We predict an enormous order-dependent quantum enhancement of thermoelectric effects in the vicinity of a higher-order `supernode' in the transmission spectrum of a nanoscale junction. Single-molecule junctions based on 3,3'-biphenyl and polyphenyl ether (PPE) are investigated in detail. The nonequilibrium thermodynamic efficiency and power output of a thermoelectric heat engine based on a 1,3-benzene junction are calculated using many-body theory, and compared to the predictions of the figure-of-merit ZT.Comment: 5 pages, 6 figure

    Half-metallic antiferromagnets in thiospinels

    Full text link
    We have theoretically designed the half-metallic (HM) antiferromagnets (AFMs) in thiospinel systems, Mn(CrV)S4\rm Mn(CrV)S_{4} and Fe0.5Cu0.5(V0.5Ti1.5)S4\rm Fe_{0.5}Cu_{0.5}(V_{0.5}Ti_{1.5})S_{4}, based on the electronic structure studies in the local-spin-density approximation (LSDA). We have also explored electronic and magnetic properties of parent spinel compounds of the above systems; CuV2S4\rm CuV_{2}S_{4} and CuTi2S4\rm CuTi_{2}S_{4} are found to be HM ferromagnets in their cubic spinel structures, while MnCr2S4\rm MnCr_{2}S_{4} is a ferrimagnetic insulator. We have discussed the feasibility of material synthesis of HM-AFM thiospinel systems.Comment: 4 pages, 5 figure

    HCI policy and the smart city

    Get PDF
    While the idea of the ‘Smart City’ has attracted increasing attention from academia, industry, and government this interest has largely had a technical and technological focus. This paper identifies some of the important political and policy challenges facing the idea, the discourse, of a ‘smart city’ as a means to optimise HCI input into the ‘smart city’ debate. It then addresses that gap by detailing a research project that explored how experts in smart city research and development in the UK context responded to this policy challenge. Experts were asked questions regarding their prior experience with the “smart city”, their understandings of what it means for a city to be smart, and what policy potentials they've recognised in the smart city. The paper analyses and offers a synthesis of the responses collected throughout the research with the current policies concerning various smart city proximity, thereby providing a critical assessment of the values underlying the smart city. The paper aims to explore and present some of the policy possibilities for UK smart cities that are potentially useful for politicians, policy makers, planners, academics, and technology companies. I believe that these perspectives for policy development can be used to inform responsible development, spatially and socially inclusive technologies, and ultimately more resilient and liveable cities

    Infrastructural Speculations: Tactics for Designing and Interrogating Lifeworlds

    Get PDF
    This paper introduces “infrastructural speculations,” an orientation toward speculative design that considers the complex and long-lived relationships of technologies with broader systems, beyond moments of immediate invention and design. As modes of speculation are increasingly used to interrogate questions of broad societal concern, it is pertinent to develop an orientation that foregrounds the “lifeworld” of artifacts—the social, perceptual, and political environment in which they exist. While speculative designs often imply a lifeworld, infrastructural speculations place lifeworlds at the center of design concern, calling attention to the cultural, regulatory, environmental, and repair conditions that enable and surround particular future visions. By articulating connections and affinities between speculative design and infrastructure studies research, we contribute a set of design tactics for producing infrastructural speculations. These tactics help design researchers interrogate the complex and ongoing entanglements among technologies, institutions, practices, and systems of power when gauging the stakes of alternate lifeworlds

    Measurement of the Generalized Forward Spin Polarizabilities of the Neutron

    Full text link
    The generalized forward spin polarizabilities γ0\gamma_0 and δLT\delta_{LT} of the neutron have been extracted for the first time in a Q2Q^2 range from 0.1 to 0.9 GeV2^2. Since γ0\gamma_0 is sensitive to nucleon resonances and δLT\delta_{LT} is insensitive to the Δ\Delta resonance, it is expected that the pair of forward spin polarizabilities should provide benchmark tests of the current understanding of the chiral dynamics of QCD. The new results on δLT\delta_{LT} show significant disagreement with Chiral Perturbation Theory calculations, while the data for γ0\gamma_0 at low Q2Q^2 are in good agreement with a next-to-lead order Relativistic Baryon Chiral Perturbation theory calculation. The data show good agreement with the phenomenological MAID model.Comment: 5 pages, 2 figures, corrected typo in author name, published in PR
    corecore