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 17 

Abstract 18 

1.  Reef fishes are an important component of marine biodiversity and changes in the 19 

composition of the assemblage structure may indicate ecological, climatic, or 20 

anthropogenic disturbances. To examine spatial differences in the reef fish 21 

assemblage structure around Easter Island, eight sites were sampled during autumn 22 

and summer 2016-2017 with Baited Remote Underwater Video systems (BRUVs).  23 

2. To determine seasonal changes, quarterly (seasonal) sampling was conducted at five 24 

of those eight sites. Fifteen pelagic species of fishes were recorded during this study, 25 

some of which have not previously been recorded in scuba surveys, including the 26 

Galapagos shark (Carcharhinus galapagensis, Snodgrass & Heller, 1905) and tunas 27 

(Scrombidae).  28 

3. Significant spatial and seasonal differences were found in the fish assemblage. Fish 29 

assemblages from the south coast differed significantly from those along the west and 30 

east coasts, mainly due to the occurrence of top predators. Winter differed from other 31 

seasons, especially along the south coast where the island is more exposed to large 32 

oceanic swells and winds from Antarctica.  33 

4. Due to the variety and high relative abundance of species recorded during this survey, 34 

BRUVs seemed to be an effective method for studying top predators at Easter Island. 35 
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The identification of priority zones for the protection of top predators species 36 

represent an important contribution of this study, in order to develop management 37 

and conservation strategies to be implemented in the newly created Rapa Nui multiple 38 

uses coastal marine protected areas (MUMPA).  39 

Keywords 40 

BRUVs, Easter Island, top predators, sharks, remote islands, trophic groups, management, 41 
conservation.    42 

 43 

Introduction  44 

Reef fishes play an important role in ecosystem function (Stevens, Bonfil, Dulvy, & Walker, 45 

2000), and are the target of recreational, commercial, and subsistence fisheries in many 46 

coastal locations (Henry & Lyle, 2003; Kingsford, Underwood, & Kennelly, 1991). Precise 47 

and accurate information on the diversity and abundance of fish populations is important for 48 

understanding their ecology, and is critical for developing effective management and 49 

conservation strategies (Andrew & Mapstone, 1987; Pita, Fernández-Márquez, & Freire, 50 

2014). Changes in the fish assemblage composition usually indicate alteration in the 51 

community structure in response to ecological, climatic, or anthropogenic drivers (Jeppesen 52 

et al., 2010; Schlosser, 1990; Westera, Lavery, & Hyndes, 2003). 53 

Reef fish assemblages vary spatially and temporally in response to biotic variables, such as 54 

food availability (Tickler, Letessier, Koldewey, & Meeuwig, 2017), predation or competition 55 

(Almany, 2004), and abiotic variables, such as habitat complexity and environmental 56 

characteristics like wave exposure and temperature (Anderson & Millar, 2004; Coles & Tarr, 57 

1990; Curley, Kingsford, & Gillanders, 2003; Friedlander & Parrish, 1998). For example, 58 

spatial variation in reef fish assemblages can occur on scales of metres to kilometres (Connell 59 

& Jones, 1991; Curley et al., 2003; Malcolm, Gladstone, Lindfield, Wraith, & Lynch, 2007), 60 

and are usually associated with habitat complexity and the environmental conditions that 61 

structure that habitat (Asher, Williams, & Harvey, 2017; Coles & Tarr, 1990; Friedlander & 62 

Parrish, 1998). Seasonal changes are more evident in reef ecosystems from sub-tropical 63 

latitudes because of greater environmental variability (Coles & Tarr, 1990; Friedlander & 64 

Parrish, 1998). However, these influences differ by location. For example, Coles and Tarr 65 
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(1990) found that the large variation in temperature between winter and summer (about 20ºC) 66 

in the Western Arabian Gulf determines the richness and abundance of inshore species. In 67 

Hawaii, Friedlander and Parrish (1998) observed that fish assemblages responded to high 68 

wind and wave energy during winter by taking refuge at deeper depths and in more complex 69 

habitats. Understanding the natural variations in the fish assemblage provides essential 70 

baseline information for designing and evaluating the effectiveness of marine protected areas 71 

(MPA) (Charton et al., 2000). Having accurate information of where to protect is especially 72 

valuable in highly urbanized areas, where area protection is constrained owing to conflicts 73 

among multiple users (Curley et al., 2003). 74 

Marine Protected Areas (MPAs) have been shown to be a highly effective means of 75 

conserving biodiversity and managing fisheries, while also restoring and preserving overall 76 

ecosystem functions (Gaines, White, Carr, & Palumbi, 2010; Lubchenco & Grorud-Colvert, 77 

2015). Through the establishment of fishing regulations such as minimum size, effort control 78 

and/or regulation of total catches (Botsford, Micheli, & Hastings, 2003; Hilborn, Micheli, & 79 

De Leo, 2006), MPAs are usually associated with the increase of abundance, biomass and 80 

size of focal species (Micheli, Halpern, Botsford, & Warner, 2004) as well as catch-per-unit-81 

effort (CPUE) in adjacent areas (Roberts, Bohnsack, Gell, Hawkins, & Goodridge, 2001). In 82 

Chile, 23 MPAs have been created in the last decade, protecting over 41% of its economic 83 

exclusive zone (EEZ) (Petit, Campoy, Hevia, Gaymer, & Squeo, 2017). The most recent 84 

three MPAs were announced during the 2017 International Marine Protected Areas Congress 85 

(IMPAC4 2017): Islas Diego Ramirez-Paso Drake, Juan Fernandez archipelago and Rapa 86 

Nui. The Rapa Nui Multiple Uses Coastal Marine Protected Area (MUMPA) covers the 87 

entire Easter Island Ecoregion and extends from the Easter Island coastline to the limit of the 88 

EEZ, embracing ~579,000 km2. 89 

Easter Island, also known by its Polynesian name Rapa Nui, is the most south-eastern coral 90 

reef ecosystem in the Pacific Ocean and harbours a unique fish assemblage with a high level 91 

of endemism (Randall & Cea, 2010). Easter Island is one of the most isolated inhabited 92 

islands in the Pacific Ocean; yet, long-term overfishing has dramatically reduced the 93 

abundance of targeted species (Aburto, Gaymer, Haoa, & Gonzales, 2015; Friedlander et al., 94 

2013; Randall & Cea, 2010; Zylich et al., 2014). Modern fishing equipment and the demand 95 
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for local fish from increasing tourism has compounded the effects of overfishing (Randall & 96 

Cea, 2010; Zylich et al., 2014). There have been a limited number of surveys of fishes around 97 

Easter Island (e.g. Easton, Gaymer, Friedlander, & Herlan, 2018; Fernández, Pappalardo, 98 

Rodríguez-Ruiz, & Castilla, 2014; Friedlander et al., 2013), with most of these studies 99 

focusing on reef fishes, rather than pelagic species. Using underwater visual census (UVC), 100 

Friedlander et al. (2013) found contrasting reef fish assemblages between Easter Island and 101 

its nearest neighbour, Salas y Gómez, a small island located ~390 km to the east. Salas y 102 

Gómez is one of the most isolated islands in the Pacific Ocean and is fully protected from 103 

fishing as part of the Motu Motiro Hiva Marine Park. Sharks, primarily the Galapagos shark 104 

(Carcharhinus galapagensis), and jacks account for more than 40% of the fish biomass 105 

around Salas y Gómez, whereas  Easter Island is dominated by smaller planktivorous species, 106 

with top predators virtually absent (Friedlander et al. 2013). 107 

In the past, ecological studies of fishes at Easter Island have relied on fishery-dependent data 108 

from commercial fisheries and UVC, performed by scuba divers (Acuña et al., 2018). The 109 

use of fishery-dependent sampling is destructive (Skomal, 2007) and inefficient due to 110 

sampling biases from gear selectivity and different fishing effort between species, habitats, 111 

seasons, and vessels (Bishop, 2006; Murphy & Jenkins, 2010; Thorson & Simpfendorfer; 112 

2009). Additionally, this technique is less effective in locations with insufficient and 113 

inaccurate landing information, like Easter Island (Aburto & Gaymer, 2018). UVC is the 114 

most-used observational technique for reef ecosystems (Medley, Gaudian, & Wells, 1993; 115 

Samoilys & Carlos, 2000). However, it also has several well-documented limitations and 116 

problems, including intra- and inter-observer variability (Thompson & Mapstone, 1997) and 117 

the effect of divers on the species behaviour (Chapman, Johnston, Dunn, & Creasey, 1974; 118 

Cole, 1994; Kulbicki, 1998; Gray et al., 2016; Emslie, Cheal, MacNeil, Miller, & Sweatman, 119 

2018; Lindfield, Harvey, McIlwain, & Halford, 2014). In contrast, remote underwater video 120 

systems, such as Baited Remote Underwater Video Systems (BRUVs), are effective,non-121 

destructive fishery-independent techniques used to sample fish assemblages without these 122 

diver-associated problems.  123 

BRUVs attract a wide range of marine species from different trophic groups into the field of 124 

view of a camera so that they can be identified and counted (Dorman, Harvey, & Newman, 125 
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2012; Hardinge, Harvey, Saunders, & Newman, 2013). BRUVs increase the number of 126 

sampled species (Stobart et al., 2007; Willis & Babcock, 2000), and are especially effective in 127 

the detection of cryptic and rare predators, such as sharks and fishery-targeted species, that 128 

are not well sampled using UVC (Brooks, Sloman, Sims, Danylchuk 2011; Harvey et al. 129 

2012; Malcolm et al., 2007; Watson, Harvey, Anderson, & Kendrick, 2005). Pelagic BRUVs 130 

are even more novel than traditional BRUVs, allowing the study of species that inhabit the 131 

water column, including highly mobile species (Santana-Garcon, Newman & Harvey, 2014; 132 

Santana‐Garcon et al., 2014b). Pelagic species are ecologically important to marine 133 

ecosystems (Freon , Cury, Shannon, Roy, 2005) and highly valuable for the fishing industry 134 

(Pauly 2002; Worm et al. 2006). Despite their importance and that they are constantly 135 

threatened by multiple factors, such as pollution, climate change, and overfishing (see Game 136 

et al. 2009), the pelagic ecosystems, at a community scale, are still data poor worldwide. 137 

Given the lack of quantitative data on the pelagic fish assemblages of Easter Island, the 138 

fragility of the marine ecosystem, and the importance of baseline information for the 139 

implementation of conservation strategies, the objectives of this study were: (1) to assess 140 

spatial and seasonal variability in the pelagic fishes around Easter Island using BRUVs; (2) 141 

to determine which environmental factors best explain the observed differences; and (3) to 142 

provide key data for advising management and conservation of the coastal areas, with 143 

particular emphasis on zoning the recently created MUMPA.    144 

 145 

Material and Methods 146 

Study area 147 

Easter Island (27°13´S and 109°37´W) has a land area of 166 km2 and ~5600 inhabitants. 148 

Located 2250 km east from Pitcairn Island and 3760 km south-west from mainland Chile, it 149 

is one of the most isolated places on earth. The nearest island is Salas y Gomez Island 150 

(26º28`S and 105º21`W), which is an uninhabited volcanic island with a total area of 0.15 151 

km2. Both islands and more than several dozen seamounts are part of the Salas y Gómez 152 

Ridge, which extends 2232 km before reaching the Nazca Ridge in the south-eastern Pacific 153 

Ocean  (Randall & Cea, 2010; Friedlander et al., 2013).  154 
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Sample collection 155 

Mid-water BRUVs were constructed according to Santana-Garcon et al., (2014a).  Each 156 

BRUVs was constructed using a single GoPro Hero 4 camera (mono-camera) held in their 157 

own underwater housing. GoPros were set to record a wide-angle of view and 1080p. A mix 158 

of fresh local fishes (~300 gr) and one can of Chilean jack mackerel (Trachurus murphyi) 159 

were used as bait. Deployments were carried out during daylight hours, avoiding dusk and 160 

dawn. Four simultaneous 1-h deployments (replicates), having a minimum separation of 500 161 

m to avoid plume dispersion overlap (Santana-Garcon et al., 2014a), were conducted at a 162 

depth of ~25 m at each site; a minimum of six deployments were conducted per site. Local 163 

knowledge, previous studies and limitations related to weather conditions were used to guide 164 

the spatial coverage of sites. Date, hour and location (latitude and longitude) were recorded 165 

during every deployment. To study spatial differences around Easter Island, eight sites were 166 

sampled during autumn and summer 2017 (Figure 1).  To determine seasonal changes in the 167 

fish assemblage, quarterly seasonal sampling was undertaken at five of those sites during 168 

2016-2017.  169 

Every BRUVs was deployed for a minimum of 70 minutes. Following the recommendations 170 

of Acuña -Marrero et al. (2018), we discarded the first and the last 5 minutes from every 171 

video to avoid any potential influence caused by the presence of the boat. Species 172 

assignments were made following Randall and Cea (2010), FishBase (ver. 02/2018, R. Froese 173 

& D. Pauly, see www.fishbase.org, accessed 2018), and consultations with world fish 174 

specialists. Each species was assigned to a functional group (herbivores, planktivores, 175 

secondary consumers, and top predators) following Friedlander et al. (2013) and FishBase 176 

(ver. 02/2018, R. Froese & D. Pauly, see www.fishbase.org, accessed 2018). Additionally, 177 

all the species were classified as “Target Species” or “Not Target Species” according to 178 

Zylich et al. (2014) and discussions by the first author with local fishermen.  The maximum 179 

number of individuals of the same species appearing in a video frame at the same time 180 

(MaxN), plus any other individual that was uniquely and clearly distinguishable from the 181 

other individuals, was used as an estimate of relative abundance or a corrected MaxN 182 

(cMaxN; see Acuña-Marrero et al., 2018). MaxN is a conservative measurement of relative 183 

abundance that avoids any error associated with recounting the same fish (Cappo, Harvey, 184 

Malcom, & Speare, 2003; Priede, Bagley, Smith, Creasey, & Merrett, 1994; Willis, Millar, 185 
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& Babcock, 2003); however, it usually underestimates the real abundance in a single 186 

deployment (Kilfoil et al., 2017). By including any other individual that was undoubtedly 187 

distinguishable within the deployment and that was not already included in the MaxN 188 

calculation, cMaxN tends to solve, in part, the underestimation problem of sampled species. 189 

cMaxN per hour was used to standardize effort across deployments of different soak times, 190 

as suggested by Santana-Garcon et al. (2004b).  Measurement of length was not considered 191 

during this study, therefore, a biomass calculation could not be included in the analysis.  192 

Data analyses 193 

All statistical analyses were conducted in PRIMER v. 7.0.13 software package (Clarke & 194 

Gorley, 2006) with the PERMANOVA+ add-on (Anderson, Gorley, & Clarke, 2008), unless 195 

otherwise specified. A Bray–Curtis similarity matrix was created on the 4th-root transformed 196 

cMaxN data. All permutational multivariate analysis of variance (PERMANOVA) tests were 197 

run with default settings and 9999 permutations to obtain p-values (Anderson et al., 2008). 198 

Statistically significant (p < 0.05) interactions were further explored with appropriate post 199 

hoc pairwise tests. To test spatial variance around Easter Island, cMaxN data of each site 200 

were analysed using “Sites” as a fixed factor in a PERMANOVA. To test seasonal difference 201 

on fish assemblage, data were analysed using seasons (winter, spring, summer and autumn) 202 

and five sites as fixed factors. A canonical analysis of principal coordinates (CAP) was used 203 

as a general test to evaluate structural differences in overall fish assemblage. CAP maximizes 204 

group differences finding the axis that best separates each group (Anderson et al., 2008). 205 

CAP analyses were run on the resemble matrix of average values between sites and seasons.   206 

Environmental data collection and analysis   207 

To determine the role of seasonal and spatial environmental variation on the fish assemblage 208 

structure, sea surface temperature (SST), long-term and recent wave energy, distance of each 209 

deployment site from the shore, and shelf width were considered. For each site, SST MUR 210 

(Multi-scale Sea Surface Temperature) satellite data at a 1 km spatial resolution 211 

(https://mur.jpl.nasa.gov) were used after we verified the accuracy of these satellite data with 212 

in situ SST data collected at Omohi, Motu Tautara, Ovahe and Kari Kari sites by Evie Wieters 213 

(Pers. Comm., unpublished data) from deployed temperature sensors (Onset, tidbit) set to 214 

record SST every ten minutes at 12-15 m depth. Long-term and recent wave energy, were 215 

https://mur.jpl.nasa.gov/
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computed from NOAA’s Wave Watch III (WWIII; http://polar.ncep.noaa.gov/waves), were 216 

binned into 16 discrete sectors each spanning 22.5 degrees. The long-term wave energy 217 

ranged from Jan 2010 to Jul 2015, meanwhile recent wave energy was calculated using mean 218 

values corresponding to the month each deployment was made. Distance from shore and 219 

shelf width were calculated for each site using Google Earth Pro (http://earth.google.com) 220 

(Table 1S). For seasonal analysis, only wave energy, long-term wave energy, and SST were 221 

considered. Environmental and biological data were analysed using distance-based linear 222 

modelling (DistLM) and a distance-based redundancy analysis (dbRDA). DistLM is a routine 223 

for analysing and modelling the relationship between a multivariate data cloud, as described 224 

by a resemblance matrix, and one or more predictor variables. The dbRDA analysis was used 225 

to visualize the given model in a multi-dimensional space (Anderson et al., 2008). 226 

Environmental values used in the DistLM-dbRDA are shown in Table S2. 227 

 228 

Results 229 

Fifteen species were recorded during the study (Table 1). Planktivores and herbivores were 230 

the largest components of the pelagic fish assemblage at Easter Island, accounting for 73.8% 231 

and 16.9%, respectively (Table 2). The most abundant species around Easter Island were 232 

Xanthichthys mento (Jordan & Gilbert, 1882) and Chromis randalli (Greenfield & Hensley, 233 

1970). Both occurred at every site-season combination, except at Vaihu during spring. Top 234 

predators, while having the highest species richness (9 species), were not well represented in 235 

abundance except at Vaihu. Fistularia commersonii (Rüppell, 1838) was the most abundant 236 

species among top predators, followed by Seriola lalandi (Valenciennes, 1833) (Table 2). 237 

Some species such as Aulostomus chinensis (Linnaeus, 1766) and Caranx lugubris (Poey, 238 

1860) showed seasonal occurrence and other species such as C. galapagensis (Snodgrass & 239 

Heller, 1905) and Pseudocaranx cheilio (Bloch & Schneider, 1801) displayed more site-240 

specific occurrences. Nine target species were recorded, seven of which were top predators. 241 

The most abundant and well distributed was Kyphosus sandwicensis (Sauvage, 1880), which 242 

was abundant along the east and west coasts of Easter Island year-round; however, low 243 

abundances were reported at Vinapu, and it was absent at Vaihu. The black trevally C. 244 

lugubris was rare during the entire study.  245 

Spatial differences 246 

http://polar.ncep.noaa.gov/waves
http://earth.google.com/
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PERMANOVA revealed that the fish assemblages differed significantly among sites 247 

(Pseudo-F = 4.795, p < 0.001). Sites along the south-east side of Easter Island, Ana hukahu, 248 

Vaihu and Vinapu, were significantly different from all the other sites around the island 249 

(Table S3). CAP illustrates the difference in the fish assemblage found using PERMANOVA 250 

(Figure 2a). The size of the first two axes were δ1 = 0.9823 and δ2 = 0.9339, respectively, 251 

over 5 (m) principal coordinate axes. The estimation of misclassification error indicates low 252 

allocation success (31%); however most of the misclassifications occurred within two groups 253 

(Figure 2a): (1) Vinapu-Vaihu-Ana hukahu, and (2) Ovahe-Omohi-Poike-Kari Kari-Motu 254 

Tautara (Table S2). Vaihu was the only site with 100% allocation success. Vector length and 255 

direction from CAP revealed that the abundance of a few species such as C. galapagensis, F. 256 

commersonii and P. cheilio drove the differences between Vaihu-Vinapu-Ana hukahu, and 257 

all the others sites (Figure 2a). The occurrence of Thunnus albacares (Bonnaterre, 1788) and 258 

Decapterus muroadsi (Temminck & Schlegel, 1844) distinguished Poike from other sites 259 

(Figure 2a), meanwhile the occurrence of Katsuwonus pelamis (Linnaeus, 1758) was a 260 

consequence of the differences at Omohi.  261 

Seasonal differences  262 

Highest richness and abundances were found in autumn and summer. Fish assemblages 263 

during winter significantly differed from the other seasons (Pseudo-F = 3.366, p < 0.001, 264 

Table S3).  Principal axes values from CAP were δ1 = 0.909 and δ2 = 0.546, over m = 3 265 

principal coordinate axes (Figure 2b). The overall estimation of misclassification error 266 

showed an allocation success of only 60%. Winter had the highest allocation success with 267 

80%, while success for autumn (60%), summer (60%), and spring (40%) were lower. In 268 

general, the occurrence and abundance of species such as X. mento, A. chinensis and S. 269 

lalandi, were associated with winter, while Aluterus scriptus and C. lugubris were associated 270 

with the summer season. 271 

Environmental analysis 272 

DistLM-dbRDA ordination showed that shelf width explained 26.6% of the spatial variation 273 

in the fish assemblage around Easter Island (p = 0.002). Recent wave energy and distance 274 

from the coast, when considered alone, explained 15.4 %, (p=0.028) and 14.5% (p= 0.039) 275 
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of the variation, respectively. Long-term wave energy was the only variable explaining 276 

significant seasonal variability (~ 17.2% of the variation, p = 0.031) (Table S4).   277 

Discussion  278 

This study is the first on spatial and temporal patterns of the pelagic fish assemblage at Easter 279 

Island, highlighting the importance of specific areas of occurrence and abundance. We found 280 

the pelagic fish assemblage at Easter Island to be dominated numerically by two small 281 

planktivore species, C. randalli and X. mento, followed by the herbivorous K. sandwicensis. 282 

The numerical dominance of planktivorous and herbivorous species observed in our study is 283 

consistent with Friedlander et al. (2013) findings that these two trophic groups accounted for 284 

40% and 31% of the total reef fish biomass, respectively. Top predator species, although less 285 

abundant, constituted the richest trophic group in our study (nine species). In contrast, 286 

Friedlander et al. (2013) only observed six species of this trophic group, and with lower 287 

abundances. These differences in richness and abundance of top predators species might be 288 

explained by differences in sampling methods. UVCs is a reliable observational technique 289 

(Medley et al., 1993; Samoilys & Carlos, 2000), and it is widely used for sampling reef-290 

associated species at shallow, nearshore habitats. However, the effect of divers on animal 291 

behaviour has led to the underestimation of some species abundance, such is the case of 292 

cryptic and fishery-target species within fishing areas (Chapman et al., 1974; Cole, 1994; 293 

Gray et al., 2016; Kulbicki, 1998; Lindfield et al., 2014), especially pelagic species (De 294 

Girolamo & Mazzoldi, 2001; Stanley & Wilson, 1995). The higher occurrence of rare species 295 

and species undersampled by UVCs, such as C. galapagensis, K. pelamis, T. albacare and 296 

C. lugubris, during our study proved the effectiveness of BRUVs in studying the pelagic fish 297 

assemblages at Easter Island, especially top predators. 298 

Top predators play an important role in the top-down ecosystem regulation (Stevens et al., 299 

2000), yet these species are the most vulnerable to overfishing and their removal could lead 300 

to environmental changes affecting ecosystem function in fragile ecosystems (Hughes, 301 

Graham, Jackson, Mumby, & Steneck, 2010; Shears & Babcock, 2002). The continued 302 

decline of top-predator populations at Easter Island has likely caused a phase shift from a 303 

healthy community dominated by large top predators, such as at Salas y Gómez, to a 304 

disturbed community dominated by smaller planktivorous species (Friedlander et al., 2013). 305 
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Seven of the nine species of top predators recorded in this study are targeted by fisheremen 306 

at Easter Island. Together with the herbivorous Pacific rudderfish, K. sandwicensis, top 307 

predators like S. lalandi, S. helleri and T. albacares are the most targeted pelagic fishes at 308 

Easter Island (Zylich et al., 2014). Subsistence catches are also dominated by K. sandwicensis 309 

and other jacks such as C. lugubris and P. cheilio (Zylich et al., 2014). According to local 310 

residents, C. lugubris was abundant in the past, but now is uncommon. Similarly, the 311 

Galapagos shark, which is currently classified as Near Threatened on the IUCN Red List, has 312 

been reported by local residents to have declined considerably around Easter Island, possibly 313 

as a result of direct and indirect fishing impacts (Zylich et al., 2014; N. Morales, pers. obs), 314 

although the overfishing of prey may also be contributing to this decline (DiSalvo, Randall, 315 

& Cea, 1988). Even though fishermen on Easter Island do not directly target the Galapagos 316 

shark, they seem to be susceptible to bycatch in coastal and offshore fisheries. Likewise, their 317 

population has declined considerably in Central America (Bennett et al., 2003), where the 318 

major threat comes from bait-fishing activities around islands and seamounts (Bennett et al., 319 

2003; Zylich et al., 2014). 320 

The Galapagos shark is the most common coastal shark around Easter Island (Randall & Cea, 321 

2010; Zylich et al., 2014), and it was the only species of shark observed during the current 322 

study. A similar BRUVs study in the Galapagos Archipelago found that the Galapagos shark 323 

was also the most abundant among 12 species of sharks in the area (Acuña-Marrero et al. 324 

2018). In that study, the Galapagos shark showed a similar mean cMaxN (0.52) per 325 

deployment to our observations (0.58), despite the fact that the highest cMaxN found in the 326 

Galapagos (8) was almost three times lower than in the current study (21). Total number of 327 

individuals observed was 334 in the Galapagos Archipelago, and 112 in the current study. 328 

These contrasting numbers could be a result of a higher local (i.e., site) concentration of this 329 

species but a lower regional (i.e., island) abundance at Easter Island than at the Galapagos 330 

Archipelago.  331 

Spatial and seasonal differences in the composition of pelagic fish species were found during 332 

this study. Species composition along the south coast (Ana hukahu, Vaihu and Vinapu) was 333 

significantly different from the east and west coasts of the island. Spatial differences in 334 

assemblage structure were driven by the occurrence and abundance of the top predators such 335 
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as C. galapagensis, F. commersonii, and P. cheilio, which showed more site specificity, 336 

suggesting the presence of specific habitat characteristics unique to certain areas. Habitat 337 

structure and complexity have been indicated as important characteristics in the composition 338 

of fish assemblages, e.g., more complex habitats provide greater food availability and refuge 339 

(Anderson & Millar, 2004; Asher et al., 2017; Coles & Tarr, 1990; Curley et al., 2003; Heupel 340 

& Hueter, 2002). Shelf width was the most influential pelagic fish assemblage driver. Along 341 

the southern coast of the island, the shelf break (30 m) occurs further from the coastline 342 

creating an extended shallow platform (Table S2). The sharks observed during this study 343 

were likely juveniles (less than 200 cm TL, Wetherbee, Crow, & Lowe, 1996), based on size 344 

estimates of those sharks that closely approached bait canisters (used for scale), suggesting 345 

juveniles have an apparent strong association with that shallow shelf habitat. Our 346 

observations suggests that the south-east coast of Easter Island could be serving as a nursery 347 

area for juvenile Galapagos sharks, which is consistent with nursery areas for Carcharhinus 348 

species often occuring in shallow waters (Springer, 1967) with a low-predation environment 349 

and ample prey availability (Branstetter, 1990; Heupel & Hueter, 2002; Simpfendorfer & 350 

Milward, 1993). 351 

Abiotic (environmental) variables also influence the abundance of fish species within an area, 352 

leading to spatial variability within the ecosystem (Felley & Felley, 1986). Wave energy has 353 

been noted as an important driver of reef habitats and benthic communities at Easter Island 354 

where the dominance of different coral species depends on the degree of exposure (Easton, 355 

et al., 2018; Friedlander et al., 2013). Wave energy came mainly from the south-west (202°) 356 

(Table S1); however, it only explained a small amount of the spatial variability in the pelagic 357 

fish assemblage. These results may be explained by the low resolution of the satellite data 358 

for each site, which probably did not reflect the real effect of wave energy in the total area. 359 

Furthermore, in situ measurement of this environmental variable may provide finer resolution 360 

and explanatory power. Although, top predator species are often associated with high-energy 361 

environments, the occurrence of top predators and target species at the south-easternmost 362 

part of the island (From Vinapu to Poike) could be also explained by the effect of adverse 363 

weather conditions (e.g. wind, currents, and wave energy) on the local fishing effort, forcing 364 

fishing into more sheltered areas.  365 
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Conversely, the most abundant target species K. sandwicensis was rare on the south coast 366 

and virtually absent between Vaihu and Ana hukahu. The nanue (Rapanui name for the K. 367 

sandwicensis) is an herbivore species that feeds primarily on red algae. At Easter Island, the 368 

occurrence of algae is concentrated at the most protected sites (north-east) of the island (see 369 

Easton et al., 2018). On the other hand, this species is one of the most prized species on Easter 370 

Island and is considered over-exploited by local people (Gaymer et al., 2013). According to 371 

Acuña et al. (2018), nanue are usually caught by traditional shoreline fishing and spear-372 

fishing, especially from Vinapu to Hanga Nui, where shoreline access is easier and fishing 373 

pressure is higher. The heavy fishing pressure together with the species habitat preference 374 

could explain the localized depletion in these areas. 375 

Seasonal variability in pelagic fish assemblage structure was evident during this study, with 376 

winter been significantly different from the other seasons. Autumn and spring are transition 377 

seasons, as has been described from other subtropical areas (Friedlander & Parrish, 1998). 378 

Sites located along the coasts most exposed to winter swells and winds (Ana hukahu, Vaihu 379 

and Vinapu) showed higher variability among seasons in comparison with more protected 380 

sites. Similar results were found by Coles and Tarr (1990) in the western Arabian Gulf, and 381 

by Friedlander and Parrish (1998) in the Hawaiian Archipelago. In both cases, the authors 382 

noticed that some mobile fishes seem to migrate from exposed to more protected and deeper 383 

locations that provide refuge from high wave energy during winter. In contrast, more 384 

protected sites seem to have more stable assemblages throughout the year. Asher et al. (2017) 385 

also found an increase in abundance of jacks and sharks in shallow and mesophotic reefs in 386 

the Hawaiian Archipelago with increasing depth, due probably to the avoidance of 387 

environmental (e.g. wave energy) and anthropogenic factors (e.g. fishing) in shallow waters. 388 

Easter Island has been understudied in comparison to other islands in the Pacific Ocean, and 389 

studies at deeper depths are even more limited (Easton et al., 2017). Seriola lalandi and P. 390 

cheilio were recorded at ~280 m and ~170 m, respectively, using ROV (remotely-operated 391 

vehicle) and Drop-Cams around Easter Island and the surrounding seamounts (Easton et al., 392 

2017). The occurrence of inshore species at deeper depths could also suggest that deeper 393 

habitats are being used as a refuge from natural and anthropogenic influences. The presence 394 

of particular species during certain seasons and at certain sites could be explored by 395 
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expanding the survey area in order to include mesophotic zones and incorporate surrounding 396 

seamounts in future designs.  397 

Conservation actions  398 

Randall and Cea (2010) proposed the establishment of marine reserves around Rapa Nui to 399 

allow resident fishes to grow until they reached full reproductive maturity. Some of the areas 400 

suggested for reserves were Motu Nui and Motu Iti (in front of Kari-Kari), Ovahe, Motu 401 

Tautara, Hanga Nui, and Motu Marotiri. The last two areas correspond to the southeast side 402 

of the island, close to where the greatest abundance of top predators was recorded and a 403 

possible nursery area for Galapagos sharks was identified. The Galapagos shark show 404 

ontogenetic segregation, where juveniles are more likely to inhabit shallow coastal waters, 405 

meanwhile adults occur in deeper waters away from the coast (Acuña-Marrero et al., 2018; 406 

Kohler, Casey, & Turner, 1998; Wetherbee et al., 1996). Areas used by early life stages are 407 

vital for population stability and recovery (Bonfil, 1997), and therefore, their protection is 408 

necessary. 409 

Additionally, several initiatives have proposed other strategies to protect marine coastal and 410 

offshore ecosystems at Easter Island. Notably, a local initiative promoted by the Rapa Nui 411 

chamber of tourism suggested the creation of a marine reserve at Hanga Roa Bay (west side 412 

of the island); however, local conflicts hindered its creation (Gaymer et al., 2011). An effort 413 

has been made in the last seven years to raise awareness and capacity building in the Rapanui 414 

community (Aburto, Gaymer, & Cundill, 2017; Gaymer et al., 2013). These efforts ultimately 415 

resulted in a participatory process that lead to the creation of a multiple uses coastal marine 416 

protected area, MUMPA, around the entire EEZ of Easter and Salas and Gómez islands, 417 

completing the protection initially provided by the Motu Motiro Hiva Marine Park in 2010. 418 

In order to implement this large-scale MPA, a participatory management plan has to be built, 419 

which includes the zoning of the MUMPA in both the coastal and offshore areas. Zoning will 420 

include establishing fully no-take coastal areas that could allow recovery of some over-421 

exploited target fishes, but also to protect areas were top predators (such as the Galapagos 422 

sharks) are concentrated. Top predators play a crucial role in ecosystem function (Friedlander 423 

& De Martini, 2002), thus their protection is necessary for maintaining ecological processes 424 

and ecosystem services. The current study is an important contribution for planning the 425 
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management and conservation strategies to be implemented in the newly created Rapa Nui 426 

MUMPA. A Marine Council, with a majority of Rapanui-elected members, will place the 427 

administration of this area under a co-management strategy, in which is an unprecedented 428 

model of MPA administration in Chile (Aburto et al. 2017) 429 

Over the last decades, there has been an increasing awareness of the added value that 430 

ecosystem services and sustainable management can offer to small human communities that 431 

inhabit coastal areas (Arkema, Abramson, & Dewsbury, 2015). Biodiversity has been 432 

recently recognized as an economic resource (Admiraal, Wossink, de Groot, & de Snoo, 433 

2013), enhancing ecotourism and helping local inhabitants shift from non-sustainable 434 

practices (overfishing) to a broader array of sustainable activities with added value such as 435 

community-based ecotourism. In this sense, the year-round occurrence of the Galapagos 436 

shark in one specific area of the island could be considered a shark-based ecotourism spot, 437 

where local operators benefit from long-lived animals ensuring decades of incomes. Thus, 438 

not only the protection of the Galapagos shark, but also its potential for ecotourism (e.g. 439 

shark-watching by SCUBA divers), should be key elements for taking into account for the 440 

zoning of the Rapa Nui MUMPA, that will allow activities such as traditional fishing 441 

practices, ecotourism, scientific research and others that should be defined in the 442 

management plan.  443 
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Tables 690 
 691 
Table 1. List of the 15 species recorded using BRUVS at Easter Island. 692 

Species  Rapa Nui name Trophic level Target 

Carcharhinidae     

                     Carcharhinus galapagensis Mango Top predator Yes 

Aulostomidae    

                      Aulostomus chinensis Toto amo Top predator No 

Fistulariidae    

                      Fistularia commersonii 

Toto amo hiku 

kio´e 
Top predator No 

Carangidae    

                      Pseudocaranx cheilio Po´opo´o Top predator Yes 

                      Caranx lugubris Ruhi Top predator Yes 

                      Seriola lalandi Toremo Top predator Yes 

                      Decapterus muroadsi  ature Planktivores Yes 

Kyphosidae    

                      Kyphosus sandwicensis Nanue Herbivorous Yes 

Chaetodontidae    

                      Chaetodon litus 
Tipi tipi uri 

Secondary 

consumer  
No 

Pomacentridae     

                     Chromis randalli Mamata Planktivores No 

Sphyraenidae  
   

                     Sphyraena helleri Barracuda Top predator Yes 

Scombridae  
   

                      Thunnus albacares Kahi Top predator Yes 

                      Katsuwonus pelamis Bonito Top predator Yes 

Balistidae     

                     Xanthichthys mento Kokiri Planktivores No 

Monacanthidae 
    

                       Aluterus scriptus 
Paoa 

Secondary 

consumer 
No 

 693 
  694 
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Table 2. Summary of fish sightings and relative abundance recorded by Baited Remote Underwater 695 
Video systems (BRUVS) at Easter Island. cMaxN: corrected MaxN. 696 

Trophic level 
Total no. 

Individuals 
% of total 

Highest 

cMaxN 

Top predator 685 8.12  
Carcharhinus 

galapagensis 112 1.33 21 

Aulostomus chinensis 27 0.32 2 

Fistularia commersonii 147 1.74 4 

Caranx lugubris 12 0.14 4 

Pseudocaranx cheilio 78 0.92 12 

Seriola lalandi 108 1.28 5 

Sphyraena helleri 25 0.30 25 

Katsuwonus pelamis 1 0.01 1 

Thunnus albacares 175 2.07 133 

    
Sec. Cons 97 1.15  
Chaetodon litus 47 0.56 9 

Aluterus scriptis 50 0.59 3 

    
Planktivore 6227 73.80  
Chromis randalli 2838 33.63 163 

Xanthichthys mento 3279 38.86 140 

Decapterus muroadsi 110 1.30 43 

    
Herbivore 1429 16.94  
Kyphosus sandwicensis 1429 16.94 241 

    

Total 8438 100  

 697 
 698 
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Figure legend 700 

Figure 1. (a) Map of Easter Island and Salas y Gómez Island in relation to South America. Dark lines 701 
represent the exclusive economic zone. (b) Sampling locations around Easter Island for seasonal 702 
variability (yellow dots). Purple dots represent the 3 extra sites used for assessing spatial variability 703 
during summer and autumn. 704 
 705 
Figure 2. Canonical analysis of principal coordinates (CAP) ordination of the variation in fish 706 
assemblage among (a) sites and (c) seasons. (b) and (d) CAP loadings shown graphically. 707 

 708 
  709 
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Supporting Information 710 
 711 
Table S1. Mean wave energy values (kW/m) and percentage of occurrence from every (360° 712 
degree) direction.  713 

Direction 
(degree) 

Mean 
Power  

Percentage 
occurrence 

Mean 
Power  

Percentage 
occurrence 

Mean 
Power  

Percentage 
occurrence 

Mean 
Power  

Percentage 
occurrence 

Long-term Wave Energy (2005-2015) 
 Autumn Winter Spring Summer 
0 45.996 0.1 49.817 0.08 29.23 0.08 15.169 0.03 
22.5 0 0.01 47.896 0.18 51.586 0.16 0 0 
45 0 0 30.633 0.87 32.205 0.87 20.171 0.15 
67.5 22.668 0.3 38.359 2.08 29.567 2.34 18.31 1.4 
90 41.308 1.34 64.37 1.8 29.915 1.68 19.312 0.61 
112.5 41.924 0.78 59.407 2.02 51.097 0.6 26.563 0.55 
135 80.406 1 48.923 2.2 38.107 0.34 26.459 0.44 
157.5 68.59 1.15 60.981 5.15 39.376 1.24 60.248 0.19 
180 68.195 18.65 68.696 14.95 53.093 9.01 37.128 4.34 
202.5 61.698 53.63 77.077 44.38 54.84 52.7 36.6 41.38 
225 59.686 15.53 70.942 23.24 47.086 22.07 32.513 20.93 
247.5 38.733 3.16 56.676 1.55 31.134 2.9 30.431 6.21 
270 36.067 1.55 44.103 0.69 32.888 1.21 32.583 5 
292.5 43.165 2.07 52.508 0.54 26.892 2.34 34.588 12.62 
315 42.979 0.73 54.927 0.28 35.519 2.46 38.798 6.14 
337.5 0 0 0 0 0 0 0 0 
 
Recent Wave Energy (2016-2017) 

 Autumn Winter Spring Summer 
0 0 0 0 0.42 0 0 0 0 
22.5 0 0 15.471 2.51 0 0 0 0 
45 0 0 14.976 1.26 0 0 0 0 
67.5 18.433 15.83 0 0 0 0 0 0 
90 0 0 0 0 0 0 0 0 
112.5 0 0.42 0 0 0 0 0 0 
135 67.318 9.17 14.243 3.35 0 0 0 0 
157.5 70.302 7.92 0 0.42 0 0 0 0 
180 58.7 12.92 28.605 10.04 15.983 6.05 26.789 7.66 
202.5 40.651 45.42 48.94 76.99 28.868 51.21 32.747 72.18 
225 32.686 8.33 50.62 3.77 29.566 16.13 31.654 16.53 
247.5 0 0 0 0 24.626 7.66 26.55 1.21 
270 0 0 0 0 24.761 6.45 22.706 0.81 
292.5 0 0 20.776 0.84 19.917 7.66 25.284 1.61 
315 0 0 0 0.42 31.161 4.84 0 0 
337.5 0 0 0 0 0 0 0 0 
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 715 
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 721 



27 
 

 722 
Table S2. Environmental variables used in the DistaLM analysis for every site and season. 723 

Season/ Site Temperature 
(°C) 

Historical 
wave energy 
(kW/m) 

Specific wave 
energy 
(kW/m) 

Distance from 
shore (m) 

Shelf width 
(m) 

Winter 
Ana hukahu - - - - - 
Ovahe 20.669 30.633 14.976 392.875 250 
Omohi - - - - - 
Kari Kari 20.69 56.676 0 324.25 250 
Motu tautara 19.285 44.103 20.776 202.5 0 
Poike  22.668 18.433 395.5 250 
Vaihu 20 60.981 28.605 463.75 1000 
Vinapu 20 77.077 48.94 311.75 750 
      
Spring      
Ana hukahu - - - - - 
Ovahe 23.746 32.205 0 392.875 250 
Omohi - - - - - 
Kari Kari 23.463 31.134 24.626 324.25 250 
Motu tautara 23.149 32.888 19.917 202.5 0 
Poike - - - - - 
Vaihu 22 39.376 15.963 463.75 1000 
Vinapu 22 54.84 28.868 311.75 750 
      
Summer       
Ana hukahu 26 26.563 0 386.5 1000 
Ovahe 26.758 20.171 0 392.875 250 
Omohi 26.247 38.798 0 255.25 0 
Kari Kari 26.59 30.431 26.55 324.25 250 
Motu tautara 26.38 32.583 25.284 202.5 0 
Poike 26.43 18.31 0 395.5 250 
Vaihu 26 60.248 26.789 463.75 1000 
Vinapu 26 36.6 32.747 311.75 750 
      
Autumn      
Ana hukahu 22.683 0 0 392.875 250 
Ovahe 22.708 42.979 0 255.25 0 
Omohi 22.84 38.733 0 324.25 250 
Kari Kari 22.773 36.067 0 202.5 0 
Motu tautara 22 22.668 18.433 395.5 250 
Poike 22 68.59 58.7 463.75 1000 
Vaihu 22 61.698 40.651 311.75 750 
Vinapu 22 41.924 67.318 386.5 1000 
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Table S3. PERMANOVA test for all the pelagic fish species. Figures in bold indicate significant 727 
results. 728 

 Level Type Pseudo-F P(perm) Unique perms 

MAIN TEST      
Site 5 Fixed 4.9648 0.0001 9943 
Season 4 Fixed 8.274 0.0001 9924 
Season x Site   1.3362 0.0881 9887 
      
PAIR-WISE TEST      
Sites      
Ovahe. Kari Kari     0.1441   9964 
Ovahe. Motu Tautara     0.0978   9977 
Ovahe. Vaihu     0.0001   9951 
Ovahe. Vinapu     0.0158   9956 
Kari Kari. Motu Tautara     0.2019   9947 
Kari Kari. Vaihu     0.0001   9948 
Kari Kari. Vinapu     0.0047   9956 
Motu Tautara. Vaihu     0.0001   9956 
Motu Tautara. Vinapu     0.0005   9954 
Vaihu. Vinapu      0.001   9943 
      
Season      
Autumn. Spring     0.4036   9960 
Autumn. Summer     0.1654   9954 
Autumn. Winter     0.0001   9956 
Spring. Summer     0.1402   9952 
Spring. Winter     0.0001   9945 
Summer. Winter     0.0001   9965 

 729 

 730 

Table S4. DistaLM test for all the pelagic fish species. Figures in bold indicate significant results. 731 

Variable SS(trace) Pseudo-F     P   Prop. 

Site     
Temperature (ºC)    913.69   1.9302 0.085 0.12117 
Historical WE (kW/m)    1008.9   2.1624 0.052 0.13379 
Specific WE (kW/m)    1162.3   2.5512 0.032 0.15414 
Distance from shore (m)    1093.5   2.3746 0.043 0.14502 
Shelf width (m)    2004.5   5.0691 0.001 0.26583 
     
Season     
Temperature (ºC) 639.58 1.1143 0.3476 0.058295 
Historical WE (kW/m) 1887 3.7986 0.0308 0.17199 
Specific WE (kW/m) 462.36 0.92675 0.437 0.042142 
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