541 research outputs found

    Zirconium and titanium complexes supported by tridentate LX2 ligands having two phenolates linked to furan, thiophene, and pyridine donors: precatalysts for propylene polymerization and oligomerization

    Get PDF
    Zirconium and titanium complexes with tridentate bis(phenolate)-donor (donor = pyridine, furan and thiophene) ligands have been prepared and investigated for applications in propylene polymerization. The ligand framework has two X-type phenolates connected to the flat heterocyclic L-type donor at the 2,6- or 2.5- positions via direct ring-ring (sp^2-sp^2)linkages. The zirconium and titanium dibenzyl complexes have been prepared by treatment of the neutral bis(phenol)-donor ligands with M(CH_2Ph)_4 (M = Ti, Zr) with loss of 2 equiv of toluene. Titanium complexes with bis(phenolate)pyridine and -furan ligands and zirconium complexes with bis(phenolate)pyridine and -thiophene ligands have been characterized by single-crystal X-ray diffraction. The solid-state structures of the bis(benzyl)titanium complexes are roughly C_2 symmetric, while the zirconium derivatives display C_s and C^1 symmetry. The bis(phenolate)pyridine titanium complexes are structurally affected by the size of the substituents substituents (CMe_3 or CEt_3) ortho to the oxygens, the larger group leading to a larger C_2 distortion. Both titanium and zirconium dibenzyl complexes were found to be catalyst precursors for the polymerization of propylene upon activation with methylaluminoxane (MAO). The activities observed for the zirconium complexes are particularly notable, exceeding 10^6 g polypropylene/mol Zr center dot h in some cases. The bis(phenolate)pyridine titanium analogues are about 10^3 times less active, but generate polymers of higher molecular weight. When activated with MAO, the titanium bis(phenolate)furan and bis(phenolate)thiophene systems were found to promote propylene oligomerization

    trans-4-(2-Amino-5-bromo-6-methyl­pyrimidin-4-ylamino)-1-methyl­cyclo­hexa­nol

    Get PDF
    The title compound, C12H19BrN4O, represents the minor component of the two products obtained in a series of transformations involving the Grignard reaction of tert-butoxy­carbonyl-protected 4-amino­cyclo­hexa­none with MeMgBr, and subsequent inter­action of the obtained amino-substituted cyclo­hexa­nol with 4-chloro-6-methyl­pyrimidin-2-amine followed by bromination with N-bromo­succinimide. The X-ray structure showed that this product represents a trans isomer with respect to the amino and hydr­oxy substituents in the cyclo­hexyl ring; the dihedral angle between the amino­pyrimidine plane and the (noncrystallographic) mirror plane of the substituted cyclo­hexyl fragment is 33.6 (3)°. Only two of the four potentially ‘active’ H atoms participate in inter­molecular N—H⋯O and O—H⋯N hydrogen bonds, linking the mol­ecules into layers parallel to the (10) plane

    Influence of ceramide on lipid domain stability studied with small-angle neutron scattering: The role of acyl chain length and unsaturation

    Get PDF
    Ceramides and diacylglycerols are groups of lipids capable of nucleating and stabilizing ordered lipid domains, structures that have been implicated in a range of biological processes. Previous studies have used fluorescence reporter molecules to explore the influence of ceramide acyl chain structure on sphingolipid-rich ordered phases. Here, we use small-angle neutron scattering (SANS) to examine the ability of ceramides and diacylglycerols to promote lipid domain formation in the well-characterized domain- forming mixture DPPC/DOPC/cholesterol. SANS is a powerful, probe-free technique for interrogating membrane heterogeneity, as it is differentially sensitive to hydrogen\u27s stable isotopes protium and deuterium. Specifcally, neutron contrast is generated through selective deuteration of lipid species, thus enabling the detection of nanoscopic domains enriched in deuterated saturated lipids dispersed in a matrix of protiated un- saturated lipids. Using large unilamellar vesicles, we found that upon replacing 10 mol % DPPC with either C16:0 or C18:0 ceramide, or 16:0 diacylglycerol (dag), lipid domains persisted to higher temperatures. However, when DPPC was replaced with short chain (C6:0 or C12:0) or very long chain (C24:0) ceramides, or ceramides with unsaturated acyl chains of any length (C6:1(3), C6:1(5), C18:1, and C24:1), as well as C18:1-dag, lipid domains were destabilized, melting at lower temperatures than those in the DPPC/DOPC/cholesterol system. These results show how ceramide acyl chain length and unsaturation influence lipid domains, and have implications for how cell membranes might modify their function through the generation of different ceramide species

    Acute Mountain Sickness Symptoms Depend on Normobaric versus Hypobaric Hypoxia

    Get PDF
    Acute mountain sickness (AMS), characterized by headache, nausea, fatigue, and dizziness when unacclimatized individuals rapidly ascend to high altitude, is exacerbated by exercise and can be disabling. Although AMS is observed in both normobaric (NH) and hypobaric hypoxia (HH), recent evidence suggests that NH and HH produce different physiological responses. We evaluated whether AMS symptoms were different in NH and HH during the initial stages of exposure and if the assessment tool mattered. Seventy-two 8 h exposures to normobaric normoxia (NN), NH, or HH were experienced by 36 subjects. The Environmental Symptoms Questionnaire (ESQ) and Lake Louise Self-report (LLS) were administered, resulting in a total of 360 assessments, with each subject answering the questionnaire 5 times during each of their 2 exposure days. Classification tree analysis indicated that symptoms contributing most to AMS were different in NH (namely, feeling sick and shortness of breath) compared to HH (characterized most by feeling faint, appetite loss, light headedness, and dim vision). However, the differences were not detected using the LLS. These results suggest that during the initial hours of exposure (1) AMS in HH may be a qualitatively different experience than in NH and (2) NH and HH may not be interchangeable environments

    Sediment-Water Interactions Affecting Dissolved-Mercury Distributions in Camp Far West Reservoir, California

    Get PDF
    Field and laboratory studies were conducted in April and November 2002 to provide the first direct measurements of the benthic flux of dissolved (0.2-micrometer filtered) mercury species (total and methylated forms) between the bottom sediment and water column at three sampling locations within Camp Far West Reservoir, California: one near the Bear River inlet to the reservoir, a second at a mid-reservoir site of comparable depth to the inlet site, and the third at the deepest position in the reservoir near the dam (herein referred to as the inlet, midreservoir and near-dam sites, respectively; Background, Fig. 1). Because of interest in the effects of historic hydraulic mining and ore processing in the Sierra Nevada foothills just upstream of the reservoir, dissolved-mercury species and predominant ligands that often control the mercury speciation (represented by dissolved organic carbon, and sulfides) were the solutes of primary interest. Benthic flux, sometimes referred to as internal recycling, represents the transport of dissolved chemical species between the water column and the underlying sediment. Because of the affinity of mercury to adsorb onto particle surfaces and to form insoluble precipitates (particularly with sulfides), the mass transport of mercury in mining-affected watersheds is typically particle dominated. As these enriched particles accumulate at depositional sites such as reservoirs, benthic processes facilitate the repartitioning, transformation, and transport of mercury in dissolved, biologically reactive forms (dissolved methylmercury being the most bioavailable for trophic transfer). These are the forms of mercury examined in this study. In contrast to typical scientific manuscripts, this report is formatted in a pyramid-like structure to serve the needs of diverse groups who may be interested in reviewing or acquiring information at various levels of technical detail (Appendix 1). The report enables quick transitions between the initial summary information (figuratively at the top of the pyramid) and the later details of methods or results (figuratively towards the base of the pyramid) using hyperlinks to supporting figures and tables, and an electronically linked Table of Contents. During two sampling events, two replicate sediment cores (Coring methods; Fig. 2) from each of three reservoir locations (Fig. 1) were used in incubation experiments to provide flux estimates and benthic biological characterizations. Incubation of these cores provided “snapshots” of solute flux across the sediment-water interface in the reservoir, under benthic, environmental conditions representative of the time and place of collection. Ancillary data, including nutrient and ligand fluxes, were gathered to provide a water-quality framework from which to compare the results for mercury

    Prominent and regressive brain developmental disorders associated with nance-horan syndrome

    Get PDF
    Nance-Horan syndrome (NHS) is a rare X-linked developmental disorder caused mainly by loss of function variants in the NHS gene. NHS is characterized by congenital cataracts, dental anomalies, and distinctive facial features, and a proportion of the affected individuals also present intellectual disability and congenital cardiopathies. Despite identification of at least 40 distinct hemizygous variants leading to NHS, genotype-phenotype correlations remain largely elusive. In this study, we describe a Sicilian family affected with congenital cataracts and dental anomalies and diagnosed with NHS by whole-exome sequencing (WES). The affected boy from this family presented a late regression of cognitive, motor, language, and adaptive skills, as well as broad behavioral anomalies. Furthermore, brain imaging showed corpus callosum anomalies and periven-tricular leukoencephalopathy. We expand the phenotypic and mutational NHS spectrum and review potential disease mechanisms underlying the central neurological anomalies and the potential neu-rodevelopmental features associated with NHS
    corecore