128 research outputs found

    Heat shock and recovery are mediated by different translational mechanisms.

    Full text link

    Heterovalent and A-atom effects in A(B'B'')O3 perovskite alloys

    Full text link
    Using first-principles supercell calculations, we have investigated energetic, structural and dielectric properties of three different A(B'B'')O_3 perovskite alloys: Ba(Zn_{1/3}Nb_{2/3})O_3 (BZN), Pb(Zn_{1/3}Nb_{2/3})O_3 (PZN), and Pb(Zr_{1/3}Ti_{2/3})O_3 (PZT). In the homovalent alloy PZT, the energetics are found to be mainly driven by atomic relaxations. In the heterovalent alloys BZN and PZN, however, electrostatic interactions among B' and B'' atoms are found to be very important. These electrostatic interactions are responsible for the stabilization of the observed compositional long-range order in BZN. On the other hand, cell relaxations and the formation of short Pb--O bonds could lead to a destabilization of the same ordered structure in PZN. Finally, comparing the dielectric properties of homovalent and heterovalent alloys, the most dramatic difference arises in connection with the effective charges of the B' atom. We find that the effective charge of Zr in PZT is anomalous, while in BZN and PZN the effective charge of Zn is close to its nominal ionic value.Comment: 7 pages, two-column style with 2 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#lb_he

    Saccharomyces cerevisiae chitin biosynthesis activation by N-acetylchitooses depends on size and structure of chito-oligosaccharides

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To explore chitin synthesis initiation, the effect of addition of exogenous oligosaccharides on <it>in vitro </it>chitin synthesis was studied. Oligosaccharides of various natures and lengths were added to a chitin synthase assay performed on a <it>Saccharomyces cerevisiae </it>membrane fraction.</p> <p>Findings</p> <p><it>N</it>-acetylchito-tetra, -penta and -octaoses resulted in 11 to 25% [<sup>14</sup>C]-GlcNAc incorporation into [<sup>14</sup>C]-chitin, corresponding to an increase in the initial velocity. The activation appeared specific to <it>N</it>-acetylchitooses as it was not observed with oligosaccharides in other series, such as beta-(1,4), beta-(1,3) or alpha-(1,6) glucooligosaccharides.</p> <p>Conclusions</p> <p>The effect induced by the <it>N</it>-acetylchitooses was a saturable phenomenon and did not interfere with free GlcNAc and trypsin which are two known activators of yeast chitin synthase activity <it>in vitro</it>. The magnitude of the activation was dependent on both oligosaccharide concentration and oligosaccharide size.</p

    Development and Validation of a Surgical Workload Measure: The Surgery Task Load Index (SURG-TLX)

    Get PDF
    Background: The purpose of the present study was to develop and validate a multidimensional, surgery-specific workload measure (the SURG-TLX), and to determine its utility in providing diagnostic information about the impact of various sources of stress on the perceived demands of trained surgical operators. As a wide range of stressors have been identified for surgeons in the operating room, the current approach of considering stress as a unidimensional construct may not only limit the degree to which underlying mechanisms may be understood but also the degree to which training interventions may be successfully matched to particular sources of stress. Methods: The dimensions of the SURG-TLX were based on two current multidimensional workload measures and developed via focus group discussion. The six dimensions were defined as mental demands, physical demands, temporal demands, task complexity, situational stress, and distractions. Thirty novices were trained on the Fundamentals of Laparoscopic Surgery (FLS) peg transfer task and then completed the task under various conditions designed to manipulate the degree and source of stress experienced: task novelty, physical fatigue, time pressure, evaluation apprehension, multitasking, and distraction. Results: The results were supportive of the discriminant sensitivity of the SURG-TLX to different sources of stress. The sub-factors loaded on the relevant stressors as hypothesized, although the evaluation pressure manipulation was not strong enough to cause a significant rise in situational stress. Conclusions: The present study provides support for the validity of the SURG-TLX instrument and also highlights the importance of considering how different stressors may load surgeons. Implications for categorizing the difficulty of certain procedures, the implementation of new technology in the operating room (man-machine interface issues), and the targeting of stress training strategies to the sources of demand are discussed. Modifications to the scale to enhance clinical utility are also suggested. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201

    The SR Protein B52/SRp55 Is Required for DNA Topoisomerase I Recruitment to Chromatin, mRNA Release and Transcription Shutdown

    Get PDF
    DNA- and RNA-processing pathways are integrated and interconnected in the eukaryotic nucleus to allow efficient gene expression and to maintain genomic stability. The recruitment of DNA Topoisomerase I (Topo I), an enzyme controlling DNA supercoiling and acting as a specific kinase for the SR-protein family of splicing factors, to highly transcribed loci represents a mechanism by which transcription and processing can be coordinated and genomic instability avoided. Here we show that Drosophila Topo I associates with and phosphorylates the SR protein B52. Surprisingly, expression of a high-affinity binding site for B52 in transgenic flies restricted localization, not only of B52, but also of Topo I to this single transcription site, whereas B52 RNAi knockdown induced mis-localization of Topo I in the nucleolus. Impaired delivery of Topo I to a heat shock gene caused retention of the mRNA at its site of transcription and delayed gene deactivation after heat shock. Our data show that B52 delivers Topo I to RNA polymerase II-active chromatin loci and provide the first evidence that DNA topology and mRNA release can be coordinated to control gene expression

    Causal circuit explanations of behavior: Are necessity and sufficiency necessary and sufficient?

    Get PDF
    In the current advent of technological innovation allowing for precise neural manipulations and copious data collection, it is hardly questioned that the explanation of behavioral processes is to be chiefly found in neural circuits. Such belief, rooted in the exhausted dualism of cause and effect, is enacted by a methodology that promotes “necessity and sufficiency” claims as the goal-standard in neuroscience, thus instructing young students on what shall reckon as explanation. Here we wish to deconstruct and explicate the difference between what is done, what is said, and what is meant by such causal circuit explanations of behavior. Well-known to most philosophers, yet ignored or at least hardly ever made explicit by neuroscientists, the original grand claim of “understanding the brain” is imperceptibly substituted by the methodologically sophisticated task of empirically establishing counterfactual dependencies. But for the 21st century neuroscientist, after so much pride, this is really an excess of humility. I argue that to upgrade intervention to explanation is prone to logical fallacies, interpretational leaps and carries a weak explanatory force, thus settling and maintaining low standards for intelligibility in neuroscience. To claim that behavior is explained by a “necessary and sufficient” neural circuit is, at best, misleading. In that, my critique (rather than criticism) is indeed mainly negative. Positively, I briefly suggest some available alternatives for conceptual progress, such as adopting circular causality (rather than lineal causality in the flavor of top-down reductionism), searching for principles of behavior(rather than taking an arbitrary definition of behavior and rushing to dissect its “underlying” neural mechanisms), and embracing process philosophy (rather than substance-mechanistic ontologies). Overall, if the goal of neuroscience is to understand the relation between brain and behavior then, in addition to excruciating neural studies (one pillar), we will need a strong theory of behavior (the other pillar) and a solid foundation to establish their relation (the bridge)
    • …
    corecore