72 research outputs found
Harnack Estimates for Quasi-Linear Degenerate Parabolic Differential Equations
We establish the intrinsic Harnack inequality for non-negative
solutions of a class of degenerate, quasilinear, parabolic equations, including
equations of the p-Laplacian and porous medium type. It is shown that the
classical Harnack estimate, while failing for degenerate parabolic equations,
it continues to hold in a space-time geometry intrinsic to the degeneracy. The
proof uses only measure-theoretical arguments, it reproduces the classical
Moser theory, for non-degenerate equations, and it is novel even in that
context. Hoelder estimates are derived as a consequence of the Harnack
inequality. The results solve a long stading issue in the theory of degenerate
parabolic equations
Kinetics of Rhodopsin Deactivation and Its Role in Regulating Recovery and Reproducibility of Rod Photoresponse
The single photon response (SPR) in vertebrate phototransduction is regulated by the dynamics of R* during its lifetime, including the random number of phosphorylations, the catalytic activity and the random sojourn time at each phosphorylation level. Because of this randomness the electrical responses are expected to be inherently variable. However the SPR is highly reproducible. The mechanisms that confer to the SPR such a low variability are not completely understood. The kinetics of rhodopsin deactivation is investigated by a Continuous Time Markov Chain (CTMC) based on the biochemistry of rhodopsin activation and deactivation, interfaced with a spatio-temporal model of phototransduction. The model parameters are extracted from the photoresponse data of both wild type and mutant mice, having variable numbers of phosphorylation sites and, with the same set of parameters, the model reproduces both WT and mutant responses. The sources of variability are dissected into its components, by asking whether a random number of turnoff steps, a random sojourn time between steps, or both, give rise to the known variability. The model shows that only the randomness of the sojourn times in each of the phosphorylated states contributes to the Coefficient of Variation (CV) of the response, whereas the randomness of the number of R* turnoff steps has a negligible effect. These results counter the view that the larger the number of decay steps of R*, the more stable the photoresponse is. Our results indicate that R* shutoff is responsible for the variability of the photoresponse, while the diffusion of the second messengers acts as a variability suppressor
Recommended from our members
Rhodopsin Expression Level Affects Rod Outer Segment Morphology and Photoresponse Kinetics
Background: The retinal rod outer segment is a sensory cilium that is specialized for the conversion of light into an electrical signal. Within the cilium, up to several thousand membranous disks contain as many as a billion copies of rhodopsin for efficient photon capture. Disks are continually turned over, requiring the daily synthesis of a prodigious amount of rhodopsin. To promote axial diffusion in the aqueous cytoplasm, the disks have one or more incisures. Across vertebrates, the range of disk diameters spans an order of magnitude, and the number and length of the incisures vary considerably, but the mechanisms controlling disk architecture are not well understood. The finding that transgenic mice overexpressing rhodopsin have enlarged disks lacking an incisure prompted us to test whether lowered rhodopsin levels constrain disk assembly. Methodology/Principal Findings: The structure and function of rods from hemizygous rhodopsin knockout (R+/−) mice with decreased rhodopsin expression were analyzed by transmission electron microscopy and single cell recording. R+/− rods were structurally altered in three ways: disk shape changed from circular to elliptical, disk surface area decreased, and the single incisure lengthened to divide the disk into two sections. Photocurrent responses to flashes recovered more rapidly than normal. A spatially resolved model of phototransduction indicated that changes in the packing densities of rhodopsin and other transduction proteins were responsible. The decrease in aqueous outer segment volume and the lengthened incisure had only minor effects on photon response amplitude and kinetics. Conclusions/Significance: Rhodopsin availability limits disk assembly and outer segment girth in normal rods. The incisure may buffer the supply of structural proteins needed to form larger disks. Decreased rhodopsin level accelerated photoresponse kinetics by increasing the rates of molecular collisions on the membrane. Faster responses, together with fewer rhodopsins, combine to lower overall sensitivity of R+/− rods to light
HIGHER-ORDER REGULARITY FOR THE SOLUTIONS OF SOME DEGENERATE QUASI-LINEAR ELLIPTIC-EQUATIONS IN THE PLANE
Published versio
- …