72 research outputs found

    Harnack Estimates for Quasi-Linear Degenerate Parabolic Differential Equations

    Get PDF
    We establish the intrinsic Harnack inequality for non-negative solutions of a class of degenerate, quasilinear, parabolic equations, including equations of the p-Laplacian and porous medium type. It is shown that the classical Harnack estimate, while failing for degenerate parabolic equations, it continues to hold in a space-time geometry intrinsic to the degeneracy. The proof uses only measure-theoretical arguments, it reproduces the classical Moser theory, for non-degenerate equations, and it is novel even in that context. Hoelder estimates are derived as a consequence of the Harnack inequality. The results solve a long stading issue in the theory of degenerate parabolic equations

    Current issues on singular and degenerate evolution equations

    Get PDF

    Kinetics of Rhodopsin Deactivation and Its Role in Regulating Recovery and Reproducibility of Rod Photoresponse

    Get PDF
    The single photon response (SPR) in vertebrate phototransduction is regulated by the dynamics of R* during its lifetime, including the random number of phosphorylations, the catalytic activity and the random sojourn time at each phosphorylation level. Because of this randomness the electrical responses are expected to be inherently variable. However the SPR is highly reproducible. The mechanisms that confer to the SPR such a low variability are not completely understood. The kinetics of rhodopsin deactivation is investigated by a Continuous Time Markov Chain (CTMC) based on the biochemistry of rhodopsin activation and deactivation, interfaced with a spatio-temporal model of phototransduction. The model parameters are extracted from the photoresponse data of both wild type and mutant mice, having variable numbers of phosphorylation sites and, with the same set of parameters, the model reproduces both WT and mutant responses. The sources of variability are dissected into its components, by asking whether a random number of turnoff steps, a random sojourn time between steps, or both, give rise to the known variability. The model shows that only the randomness of the sojourn times in each of the phosphorylated states contributes to the Coefficient of Variation (CV) of the response, whereas the randomness of the number of R* turnoff steps has a negligible effect. These results counter the view that the larger the number of decay steps of R*, the more stable the photoresponse is. Our results indicate that R* shutoff is responsible for the variability of the photoresponse, while the diffusion of the second messengers acts as a variability suppressor

    Real analysis

    No full text

    Partial Differential Equations: Second Edition

    No full text

    Degenerate parabolic equations

    No full text
    • …
    corecore