1,241 research outputs found
Stochastic Geometry Modeling and Performance Evaluation of mmWave Cellular Communications
In this paper, a new mathematical framework to the analysis of millimeter
wave cellular networks is introduced. Its peculiarity lies in considering
realistic path-loss and blockage models, which are derived from experimental
data recently reported in the literature. The path-loss model accounts for
different distributions for line-of-sight and non-line-of-sight propagation
conditions and the blockage model includes an outage state that provides a
better representation of the outage possibilities of millimeter wave
communications. By modeling the locations of the base stations as points of a
Poisson point process and by relying upon a noise-limited approximation for
typical millimeter wave network deployments, exact integral expressions for
computing the coverage probability and the average rate are obtained. With the
aid of Monte Carlo simulations, the noise-limited approximation is shown to be
sufficiently accurate for typical network densities. Furthermore, it is shown
that sufficiently dense millimeter wave cellular networks are capable of
outperforming micro wave cellular networks, both in terms of coverage
probability and average rate.Comment: Presented at 2015 IEEE International Conference on Communications
(ICC), London, UK (June 2015). arXiv admin note: substantial text overlap
with arXiv:1410.357
Stochastic Geometry Modeling of Cellular Networks: Analysis, Simulation and Experimental Validation
Due to the increasing heterogeneity and deployment density of emerging
cellular networks, new flexible and scalable approaches for their modeling,
simulation, analysis and optimization are needed. Recently, a new approach has
been proposed: it is based on the theory of point processes and it leverages
tools from stochastic geometry for tractable system-level modeling, performance
evaluation and optimization. In this paper, we investigate the accuracy of this
emerging abstraction for modeling cellular networks, by explicitly taking
realistic base station locations, building footprints, spatial blockages and
antenna radiation patterns into account. More specifically, the base station
locations and the building footprints are taken from two publicly available
databases from the United Kingdom. Our study confirms that the abstraction
model based on stochastic geometry is capable of accurately modeling the
communication performance of cellular networks in dense urban environments.Comment: submitted for publicatio
Diversity, Coding, and Multiplexing Trade-Off of Network-Coded Cooperative Wireless Networks
In this paper, we study the performance of network-coded cooperative
diversity systems with practical communication constraints. More specifically,
we investigate the interplay between diversity, coding, and multiplexing gain
when the relay nodes do not act as dedicated repeaters, which only forward data
packets transmitted by the sources, but they attempt to pursue their own
interest by forwarding packets which contain a network-coded version of
received and their own data. We provide a very accurate analysis of the Average
Bit Error Probability (ABEP) for two network topologies with three and four
nodes, when practical communication constraints, i.e., erroneous decoding at
the relays and fading over all the wireless links, are taken into account.
Furthermore, diversity and coding gain are studied, and advantages and
disadvantages of cooperation and binary Network Coding (NC) are highlighted.
Our results show that the throughput increase introduced by NC is offset by a
loss of diversity and coding gain. It is shown that there is neither a coding
nor a diversity gain for the source node when the relays forward a
network-coded version of received and their own data. Compared to other results
available in the literature, the conclusion is that binary NC seems to be more
useful when the relay nodes act only on behalf of the source nodes, and do not
mix their own packets to the received ones. Analytical derivation and findings
are substantiated through extensive Monte Carlo simulations.Comment: IEEE International Conference on Communications (ICC), 2012. Accepted
for publication and oral presentatio
The Intensity Matching Approach: A Tractable Stochastic Geometry Approximation to System-Level Analysis of Cellular Networks
The intensity matching approach for tractable performance evaluation and
optimization of cellular networks is introduced. It assumes that the base
stations are modeled as points of a Poisson point process and leverages
stochastic geometry for system-level analysis. Its rationale relies on
observing that system-level performance is determined by the intensity measure
of transformations of the underlaying spatial Poisson point process. By
approximating the original system model with a simplified one, whose
performance is determined by a mathematically convenient intensity measure,
tractable yet accurate integral expressions for computing area spectral
efficiency and potential throughput are provided. The considered system model
accounts for many practical aspects that, for tractability, are typically
neglected, e.g., line-of-sight and non-line-of-sight propagation, antenna
radiation patterns, traffic load, practical cell associations, general fading
channels. The proposed approach, more importantly, is conveniently formulated
for unveiling the impact of several system parameters, e.g., the density of
base stations and blockages. The effectiveness of this novel and general
methodology is validated with the aid of empirical data for the locations of
base stations and for the footprints of buildings in dense urban environments.Comment: Submitted for Journal Publicatio
Stochastic Geometry Modeling and Analysis of Multi-Tier Millimeter Wave Cellular Networks
In this paper, a new mathematical framework to the analysis of millimeter
wave cellular networks is introduced. Its peculiarity lies in considering
realistic path-loss and blockage models, which are derived from recently
reported experimental data. The path-loss model accounts for different
distributions of line-of-sight and non-line-of-sight propagation conditions and
the blockage model includes an outage state that provides a better
representation of the outage possibilities of millimeter wave communications.
By modeling the locations of the base stations as points of a Poisson point
process and by relying on a noise-limited approximation for typical millimeter
wave network deployments, simple and exact integral as well as approximated and
closed-form formulas for computing the coverage probability and the average
rate are obtained. With the aid of Monte Carlo simulations, the noise-limited
approximation is shown to be sufficiently accurate for typical network
densities. The proposed mathematical framework is applicable to cell
association criteria based on the smallest path-loss and on the highest
received power. It accounts for beamforming alignment errors and for multi-tier
cellular network deployments. Numerical results confirm that sufficiently dense
millimeter wave cellular networks are capable of outperforming micro wave
cellular networks, both in terms of coverage probability and average rate.Comment: Submitted to IEEE Transactions on Wireless Communication
Outage Probability of Dual-Hop Selective AF With Randomly Distributed and Fixed Interferers
The outage probability performance of a dual-hop amplify-and-forward
selective relaying system with global relay selection is analyzed for
Nakagami- fading channels in the presence of multiple interferers at both
the relays and the destination. Two different cases are considered. In the
first case, the interferers are assumed to have random number and locations.
Outage probability using the generalized Gamma approximation (GGA) in the form
of one-dimensional integral is derived. In the second case, the interferers are
assumed to have fixed number and locations. Exact outage probability in the
form of one-dimensional integral is derived. For both cases, closed-form
expressions of lower bounds and asymptotic expressions for high
signal-to-interference-plus-noise ratio are also provided. Simplified
closed-form expressions of outage probability for special cases (e.g., dominant
interferences, i.i.d. interferers, Rayleigh distributed signals) are studied.
Numerical results are presented to show the accuracy of our analysis by
examining the effects of the number and locations of interferers on the outage
performances of both AF systems with random and fixed interferers.Comment: 35 pages, 11 figures, accepted with minor revisions for publication
as a regular paper in the IEEE Transactions on Vehicular Technology on
21/09/201
Average Rate of Downlink Heterogeneous Cellular Networks over Generalized Fading Channels - A Stochastic Geometry Approach
In this paper, we introduce an analytical framework to compute the average
rate of downlink heterogeneous cellular networks. The framework leverages
recent application of stochastic geometry to other-cell interference modeling
and analysis. The heterogeneous cellular network is modeled as the
superposition of many tiers of Base Stations (BSs) having different transmit
power, density, path-loss exponent, fading parameters and distribution, and
unequal biasing for flexible tier association. A long-term averaged maximum
biased-received-power tier association is considered. The positions of the BSs
in each tier are modeled as points of an independent Poisson Point Process
(PPP). Under these assumptions, we introduce a new analytical methodology to
evaluate the average rate, which avoids the computation of the Coverage
Probability (Pcov) and needs only the Moment Generating Function (MGF) of the
aggregate interference at the probe mobile terminal. The distinguishable
characteristic of our analytical methodology consists in providing a tractable
and numerically efficient framework that is applicable to general fading
distributions, including composite fading channels with small- and mid-scale
fluctuations. In addition, our method can efficiently handle correlated
Log-Normal shadowing with little increase of the computational complexity. The
proposed MGF-based approach needs the computation of either a single or a
two-fold numerical integral, thus reducing the complexity of Pcov-based
frameworks, which require, for general fading distributions, the computation of
a four-fold integral.Comment: Accepted for publication in IEEE Transactions on Communications, to
appea
Electromagnetic Signal and Information Theory -- Electromagnetically Consistent Communication Models for the Transmission and Processing of Information
In this paper, we present electromagnetic signal and information theory
(ESIT). ESIT is an interdisciplinary scientific discipline, which amalgamates
electromagnetic theory, signal processing theory, and information theory. ESIT
is aimed at studying and designing physically consistent communication schemes
for the transmission and processing of information in communication networks.
In simple terms, ESIT can be defined as physics-aware information theory and
signal processing for communications. We consider three relevant problems in
contemporary communication theory, and we show how they can be tackled under
the lenses of ESIT. Specifically, we focus on (i) the theoretical and practical
motivations behind antenna designs based on subwavelength radiating elements
and interdistances; (ii) the modeling and role played by the electromagnetic
mutual coupling, and the appropriateness of multiport network theory for
modeling it; and (iii) the analytical tools for unveiling the performance
limits and realizing spatial multiplexing in near field, line-of-sight,
channels. To exemplify the role played by ESIT and the need for electromagnetic
consistency, we consider case studies related to reconfigurable intelligent
surfaces and holographic surfaces, and we highlight the inconsistencies of
widely utilized communication models, as opposed to communication models that
originate from first electromagnetic principles.Comment: Submitted for journal publicatio
Power Beacon-Assisted Millimeter Wave Ad Hoc Networks
Deployment of low cost power beacons (PBs) is a promising solution for
dedicated wireless power transfer (WPT) in future wireless networks. In this
paper, we present a tractable model for PB-assisted millimeter wave (mmWave)
wireless ad hoc networks, where each transmitter (TX) harvests energy from all
PBs and then uses the harvested energy to transmit information to its desired
receiver. Our model accounts for realistic aspects of WPT and mmWave
transmissions, such as power circuit activation threshold, allowed maximum
harvested power, maximum transmit power, beamforming and blockage. Using
stochastic geometry, we obtain the Laplace transform of the aggregate received
power at the TX to calculate the power coverage probability. We approximate and
discretize the transmit power of each TX into a finite number of discrete power
levels in log scale to compute the channel and total coverage probability. We
compare our analytical predictions to simulations and observe good accuracy.
The proposed model allows insights into effect of system parameters, such as
transmit power of PBs, PB density, main lobe beam-width and power circuit
activation threshold on the overall coverage probability. The results confirm
that it is feasible and safe to power TXs in a mmWave ad hoc network using PBs.Comment: This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may no
longer be accessibl
Space Shift Keying (SSK) Modulation With Partial Channel State Information: Optimal Detector and Performance Analysis Over Fading Channels
International audienceSpace Shift Keying (SSK) modulation is a new and recently proposed transmission technology for Multiple–Input–Multiple–Output (MIMO) wireless systems, which has been shown to be a promising low–complexity alternative to several state–of–the–art MIMO schemes. So far, only optimal or heuristic transceivers with Full Channel State Information (F–CSI) at the receiver have been investigated, and their performance analyzed over fading channels. In this paper, we develop and study the performance of the optimal Maximum–Likelihood (ML) detector with unknown phase reference at the receiver (i.e., Partial–CSI, P–CSI, knowledge). A very accurate analytical framework for the analysis and optimization of this novel detector over generically correlated and non–identically distributed Nakagami–m fading channels is proposed, and its performance compared to the optimal receiver design with F–CSI. Numerical results will point out that: i) the performance of SSK modulation is significantly affected by the characteristics of fading channels, e.g., channel correlation, fading severity, and, particularly, power imbalance among the transmit–receive wireless links, and ii) unlike ordinary modulation schemes, there is a substantial performance loss when the receiver cannot exploit the phase information for optimal receiver design. This latter result highlights the importance of accurate and reliable channel estimation mechanisms for the efficient operation of SSK modulation over fading channels. Analytical frameworks and theoretical findings will also be substantiated via Monte Carlo simulations
- …