In this paper, a new mathematical framework to the analysis of millimeter
wave cellular networks is introduced. Its peculiarity lies in considering
realistic path-loss and blockage models, which are derived from experimental
data recently reported in the literature. The path-loss model accounts for
different distributions for line-of-sight and non-line-of-sight propagation
conditions and the blockage model includes an outage state that provides a
better representation of the outage possibilities of millimeter wave
communications. By modeling the locations of the base stations as points of a
Poisson point process and by relying upon a noise-limited approximation for
typical millimeter wave network deployments, exact integral expressions for
computing the coverage probability and the average rate are obtained. With the
aid of Monte Carlo simulations, the noise-limited approximation is shown to be
sufficiently accurate for typical network densities. Furthermore, it is shown
that sufficiently dense millimeter wave cellular networks are capable of
outperforming micro wave cellular networks, both in terms of coverage
probability and average rate.Comment: Presented at 2015 IEEE International Conference on Communications
(ICC), London, UK (June 2015). arXiv admin note: substantial text overlap
with arXiv:1410.357