180 research outputs found
L'Italia nel sangue altrui. Dall'antichità all'attualità internazionale
The article illustrates and explains the historical background of an Italy that from classical antiquity to the present day has undergone numerous, often dramatic changes that, over time, have altered its role and its same political and geographical nature, placing, from time to time, as a pure geographical expression or as a united state always conditioned by a vain, sometimes disastrous, will to power. The place that Italy now occupies in the European context
Active crosstalk reduction system for multiview autostereoscopic displays
Multiview autostereoscopic displays are considered as the future of 3DTV. However, these displays suffer from a high level of crosstalk, which negatively impacts quality of experience (QoE). In this paper, we propose a system to improve 3D QoE on multiview autostereoscopic displays. First, the display is characterized in terms of luminance distribution. Then, the luminance profiles are modeled using a limited set of parameters. A Kinect sensor is used to determine the viewer position in front of the display. Finally, the proposed system performs an intelligent on the fly allocation of the output views to minimize the perceived crosstalk. The user preference between 2D and 3D modes and the proposed system is evaluated. Results show that picture quality is significantly improved when compared to the standard 3D mode, for a similar depth perception and visual comfort
Geomagnetically trapped, albedo and solar energetic particles: trajectory analysis and flux reconstruction with PAMELA
The PAMELA satellite experiment is providing comprehensive observations of
the interplanetary and magnetospheric radiation in the near-Earth environment.
Thanks to its identification capabilities and the semi-polar orbit, PAMELA is
able to precisely measure the energetic spectra and the angular distributions
of the different cosmic-ray populations over a wide latitude region, including
geomagnetically trapped and albedo particles. Its observations comprise the
solar energetic particle events between solar cycles 23 and 24, and the
geomagnetic cutoff variations during magnetospheric storms. PAMELA's
measurements are supported by an accurate analysis of particle trajectories in
the Earth's magnetosphere based on a realistic geomagnetic field modeling,
which allows the classification of particle populations of different origin and
the investigation of the asymptotic directions of arrival.Comment: Accepted for publication in Advances in Space Research, 2016. 21
pages, 7 figure
PAMELA's measurements of geomagnetic cutoff variations during solar energetic particle events
Data from the PAMELA satellite experiment were used to measure the
geomagnetic cutoff for high-energy ( 80 MeV) protons during the solar
particle events on 2006 December 13 and 14. The variations of the cutoff
latitude as a function of rigidity were studied on relatively short timescales,
corresponding to single spacecraft orbits (about 94 minutes). Estimated cutoff
values were cross-checked with those obtained by means of a trajectory tracing
approach based on dynamical empirical modeling of the Earth's magnetosphere. We
find significant variations in the cutoff latitude, with a maximum suppression
of about 6 deg for 80 MeV protons during the main phase of the storm. The
observed reduction in the geomagnetic shielding and its temporal evolution were
compared with the changes in the magnetosphere configuration, investigating the
role of IMF, solar wind and geomagnetic (Kp, Dst and Sym-H indexes) variables
and their correlation with PAMELA cutoff results.Comment: Conference: The 34th International Cosmic Ray Conference (ICRC2015),
30 July - 6 August, 2015, The Hague, The Netherlands, Volume:
PoS(ICRC2015)28
Solar energetic particle events: trajectory analysis and flux reconstruction with PAMELA
The PAMELA satellite experiment is providing first direct measurements of
Solar Energetic Particles (SEPs) with energies from about 80 MeV to several GeV
in near-Earth space, bridging the low energy data by other space-based
instruments and the Ground Level Enhancement (GLE) data by the worldwide
network of neutron monitors. Its unique observational capabilities include the
possibility of measuring the flux angular distribution and thus investigating
possible anisotropies. This work reports the analysis methods developed to
estimate the SEP energy spectra as a function of the particle pitch-angle with
respect to the Interplanetary Magnetic Field (IMF) direction. The crucial
ingredient is provided by an accurate simulation of the asymptotic exposition
of the PAMELA apparatus, based on a realistic reconstruction of particle
trajectories in the Earth's magnetosphere. As case study, the results for the
May 17, 2012 event are presented.Comment: Conference: The 34th International Cosmic Ray Conference (ICRC2015),
30 July - 6 August, 2015, The Hague, The Netherlands, Volume:
PoS(ICRC2015)08
On-orbit Operations and Offline Data Processing of CALET onboard the ISS
The CALorimetric Electron Telescope (CALET), launched for installation on the
International Space Station (ISS) in August, 2015, has been accumulating
scientific data since October, 2015. CALET is intended to perform long-duration
observations of high-energy cosmic rays onboard the ISS. CALET directly
measures the cosmic-ray electron spectrum in the energy range of 1 GeV to 20
TeV with a 2% energy resolution above 30 GeV. In addition, the instrument can
measure the spectrum of gamma rays well into the TeV range, and the spectra of
protons and nuclei up to a PeV.
In order to operate the CALET onboard ISS, JAXA Ground Support Equipment
(JAXA-GSE) and the Waseda CALET Operations Center (WCOC) have been established.
Scientific operations using CALET are planned at WCOC, taking into account
orbital variations of geomagnetic rigidity cutoff. Scheduled command sequences
are used to control the CALET observation modes on orbit. Calibration data
acquisition by, for example, recording pedestal and penetrating particle
events, a low-energy electron trigger mode operating at high geomagnetic
latitude, a low-energy gamma-ray trigger mode operating at low geomagnetic
latitude, and an ultra heavy trigger mode, are scheduled around the ISS orbit
while maintaining maximum exposure to high-energy electrons and other
high-energy shower events by always having the high-energy trigger mode active.
The WCOC also prepares and distributes CALET flight data to collaborators in
Italy and the United States.
As of August 31, 2017, the total observation time is 689 days with a live
time fraction of the total time of approximately 84%. Nearly 450 million events
are collected with a high-energy (E>10 GeV) trigger. By combining all operation
modes with the excellent-quality on-orbit data collected thus far, it is
expected that a five-year observation period will provide a wealth of new and
interesting results.Comment: 11 pages, 7 figures, published online 27 February 201
Search for GeV Gamma-ray Counterparts of Gravitational Wave Events by CALET
We present results on searches for gamma-ray counterparts of the LIGO/Virgo
gravitational-wave events using CALorimetric Electron Telescope ({\sl CALET})
observations. The main instrument of {\sl CALET}, CALorimeter (CAL), observes
gamma-rays from GeV up to 10 TeV with a field of view of nearly 2 sr.
In addition, the {\sl CALET} gamma-ray burst monitor (CGBM) views 3 sr
and sr of the sky in the 7 keV -- 1 MeV and the 40 keV -- 20 MeV
bands, respectively, by using two different crystal scintillators. The {\sl
CALET} observations on the International Space Station started in October 2015,
and here we report analyses of events associated with the following
gravitational wave events: GW151226, GW170104, GW170608, GW170814 and GW170817.
Although only upper limits on gamma-ray emission are obtained, they correspond
to a luminosity of erg s in the GeV energy band
depending on the distance and the assumed time duration of each event, which is
approximately the order of luminosity of typical short gamma-ray bursts. This
implies there will be a favorable opportunity to detect high-energy gamma-ray
emission in further observations if additional gravitational wave events with
favorable geometry will occur within our field-of-view. We also show the
sensitivity of {\sl CALET} for gamma-ray transient events which is the order of
~erg\,cm\,s for an observation of 100~s duration.Comment: 12 pages, 8 figures, 1 table. Accepted for publication in
Astrophysical Journa
Recommended from our members
Voices of Occupiers/Liberators: the BBC's radio propaganda in Italy between 1942 and 1945
The ambiguity of the role played by British propaganda in Italy during the Second World War is clearly reflected in the phenomenon of Radio London. While Radio London raised the morale of the Italian civilians living under the Fascist regime and provided them with alternative information on the conflict, the microphones of the BBC were also used by the British government to address a country they were planning to occupy. In this article, I will analyse the occupation/liberation operations that were run at the BBC Italian Service from two separate angles. On the one hand, the analysis of the programmes broadcast between the months preceding the Allies’ landing in Sicily and the actual occupation shows how the Allies built their image as liberators and guarantors of better living conditions. On the other, the analysis of the relationships between the Foreign Office and the anti-Fascist exiles reveals that the Italian BBC broadcasters were not always allowed to freely express their political opinion or to dispose of their own lives
Isotopic Composition of Light Nuclei in Cosmic Rays: Results from AMS-01
The variety of isotopes in cosmic rays allows us to study different aspects
of the processes that cosmic rays undergo between the time they are produced
and the time of their arrival in the heliosphere. In this paper we present
measurements of the isotopic ratios 2H/4He, 3He/4He, 6Li/7Li, 7Be/(9Be+10Be)
and 10B/11B in the range 0.2-1.4 GeV of kinetic energy per nucleon. The
measurements are based on the data collected by the Alpha Magnetic
Spectrometer, AMS-01, during the STS-91 flight in 1998 June.Comment: To appear in ApJ. 12 pages, 11 figures, 6 table
- …