6,346 research outputs found
Galactic Centre stellar winds and Sgr A* accretion
(ABRIDGED) We present in detail our new 3D numerical models for the accretion
of stellar winds on to Sgr A*. In our most sophisticated models, we put stars
on realistic orbits around Sgr A*, include `slow' winds (300 km/s), and account
for radiative cooling. We first model only one phase `fast' stellar winds (1000
km/s). For wind sources fixed in space, the accretion rate is Mdot ~ 1e-5
Msun/yr, fluctuates by < 10%, and is in a good agreement with previous models.
In contrast, Mdot decreases by an order of magnitude for stars following
circular orbits, and fluctuates by ~ 50%. Then we allow a fraction of stars to
produce slow winds. Much of these winds cool radiatively, forming cold clumps
immersed into the X-ray emitting gas. We test two orbital configurations for
the stars in this scenario, an isotropic distribution and two rotating discs
with perpendicular orientation. The morphology of cold gas is quite sensitive
to the orbits. In both cases, however, most of the accreted gas is hot, with an
almost constant Mdot ~ 3e-6 Msun/yr, consistent with Chandra observations. The
cold gas accretes in intermittent, short but powerful episodes which may give
rise to large amplitude variability in the luminosity of Sgr A* on time scales
of 10s to 100s of years. The circularisation radii for the flows are ~ 1e3 and
1e4 Rsch, for the one and two-phase wind simulations, respectively, never
forming the quasi-spherical accretion flows suggested in some previous work.
Our work suggests that, averaged over time scales of 100s to 1000s of years,
the radiative and mechanical luminosity of Sgr A* may be substantially higher
than it is in its current state. Further improvements of the wind accretion
modelling of Sgr A* will rely on improved observational constraints for the
wind properties and stellar orbits.Comment: 16 pages, 18 colour figures. Accepted by MNRAS. Full resolution paper
and movies available at http://www.mpa-garching.mpg.de/~jcuadra/Winds/ . (v2:
minor changes
Astrocomp: a web service for the use of high performance computers in Astrophysics
Astrocomp is a joint project, developed by the INAF-Astrophysical Observatory
of Catania, University of Roma La Sapienza and Enea. The project has the goal
of providing the scientific community of a web-based user-friendly interface
which allows running parallel codes on a set of high-performance computing
(HPC) resources, without any need for specific knowledge about parallel
programming and Operating Systems commands. Astrocomp provides, also, computing
time on a set of parallel computing systems, available to the authorized user.
At present, the portal makes a few codes available, among which: FLY, a
cosmological code for studying three-dimensional collisionless self-gravitating
systems with periodic boundary conditions; ATD, a parallel tree-code for the
simulation of the dynamics of boundary-free collisional and collisionless
self-gravitating systems and MARA, a code for stellar light curves analysis.
Other codes are going to be added to the portal.Comment: LaTeX with elsart.cls and harvard.sty (included). 7 pages. To be
submitted to a specific journa
Radiation Reaction Effects on Electron Nonlinear Dynamics and Ion Acceleration in Laser-solid Interaction
Radiation Reaction (RR) effects in the interaction of an ultra-intense laser
pulse with a thin plasma foil are investigated analytically and by
two-dimensional (2D3P) Particle-In-Cell (PIC) simulations. It is found that the
radiation reaction force leads to a significant electron cooling and to an
increased spatial bunching of both electrons and ions. A fully relativistic
kinetic equation including RR effects is discussed and it is shown that RR
leads to a contraction of the available phase space volume. The results of our
PIC simulations are in qualitative agreement with the predictions of the
kinetic theory
Communication: Hole localization in Al-doped quartz SiO2 within ab initio hybrid-functional DFT
We investigate the long-standing problem of the hole localization at the Al
impurity in quartz SiO, using a relatively recent DFT hybrid-functional
method in which the exchange fraction is obtained \emph{ab initio}, based on an
analogy with the static many-body COHSEX approximation to the electron
self-energy. As the amount of the admixed exact exchange in hybrid functionals
has been shown to be determinant for properly capturing the hole localization,
this problem constitutes a prototypical benchmark for the accuracy of the
method, allowing one to assess to what extent self-interaction effects are
avoided. We obtain good results in terms of description of the charge
localization and structural distortion around the Al center, improving with
respect to the more popular B3LYP hybrid-functional approach. We also discuss
the accuracy of computed hyperfine parameters, by comparison with previous
calculations based on other self-interaction-free methods, as well as
experimental values. We discuss and rationalize the limitations of our approach
in computing defect-related excitation energies in low-dielectric-constant
insulators.Comment: Accepted for publication in J. Chem. Phys. (Communications
Retrofit Proposals for Energy Efficiency and Thermal Comfort in Historic Public Buildings: The Case of the Engineering Facultyâs Seat of Sapienza University
The building sector greatly contributes to energy consumption and Greenhouse Gas emissions, relating to the whole building life cycle. Boasting a huge building heritage of historical and architectural value, Europe faces challenging retrofit perspectives, as the potential for high energy efficiency has to be exploited while preserving the buildings' original characteristics. The present work aims to feature the influence of a passive strategy on a heritage building in a mild climate. As historical its facade cannot be modified, its large glazing areas involve multiple issues, such as an increase in the heating (QH) and cooling (QC) energy demands and the risk of thermal discomfort. Thus, window replacement was proposed for retrofitting. A dynamic simulation model in TRNSYS was validated with experimental data collected by the continuous monitoring of walls of different thicknesses and orientations. Solutions from replacement with Double Glazing Units (DGUs) with improved thermal insulation, to internal shading activation were applied. All configurations were compared in terms of QH, QC, thermal performance of the building and user comfort (Fanger). Low-e DGU enabled the saving of up to 14% of the annual energy demand, and shading also offered good results in summer, reducing QC by 19%. In summer, DGU involved a maximum PPD reduction of 10 units
X-ray Images of Hot Accretion Flows
We consider the X-ray emission due to bremsstrahlung processes from hot, low
radiative-efficiency accretion flows around supermassive and galactic black
holes. We calculate surface brightness profiles and Michelson visibility
functions for a range of density profiles, rho ~ r^(-3/2+p), with 0 < p < 1, to
allow for the presence of outflows. We find that although the 1 keV emitting
region in these flows can always extend up to 10^6 Schwarzschild radii (R_S),
their surface brightness profiles and visibility functions are strongly
affected by the specific density profile. The advection-dominated solutions
with no outflows (p=0) lead to centrally peaked profiles with characteristic
sizes of only a few tens of R_S. Solutions with strong outflows (p~1) lead to
flat intensity profiles with significantly larger characteristic sizes of up to
10^6 R_S. This implies that low luminosity galactic nuclei, such as M87, may
appear as extended X-ray sources when observed with current X-ray imaging
instruments. We show that X-ray brightness profiles and their associated
visibility functions may be powerful probes for determining the relevant mode
of accretion and, in turn, the properties of hot accretion flows. We discuss
the implications of our results for observations with the Chandra X-ray
Observatory and the planned X-ray interferometer MAXIM.Comment: 14 pages, 4 figures, accepted by The Astrophysical Journal, minor
change
A deductive statistical mechanics approach for granular matter
We introduce a deductive statistical mechanics approach for granular
materials which is formally built from few realistic physical assumptions. The
main finding is an universal behavior for the distribution of the density
fluctuations. Such a distribution is the equivalent of the Maxwell-Boltzmann's
distribution in the kinetic theory of gasses. The comparison with a very
extensive set of experimental and simulation data for packings of monosized
spherical grains, reveals a remarkably good quantitative agreement with the
theoretical predictions for the density fluctuations both at the grain level
and at the global system level. Such agreement is robust over a broad range of
packing fractions and it is observed in several distinct systems prepared by
using different methods. The equilibrium distributions are characterized by
only one parameter () which is a quantity very sensitive to changes in the
structural organization. The thermodynamical equivalent of and its relation
with the `granular temperature' are also discussed.Comment: 15 pages, 6 figure
Exact Results for the Roughness of a Finite Size Random Walk
We consider the role of finite size effects on the value of the effective
Hurst exponent H. This problem is motivated by the properties of the high
frequency daily stock-prices. For a finite size random walk we derive some
exact results based on Spitzer's identity. The conclusion is that finite size
effects strongly enhance the value of H and the convergency to the asymptotic
value (H=1/2) is rather slow. This result has a series of conceptual and
practical implication which we discuss.Comment: 5 pages, 3 figure
The GalMer database: Galaxy Mergers in the Virtual Observatory
We present the GalMer database, a library of galaxy merger simulations, made
available to users through tools compatible with the Virtual Observatory (VO)
standards adapted specially for this theoretical database. To investigate the
physics of galaxy formation through hierarchical merging, it is necessary to
simulate galaxy interactions varying a large number of parameters:
morphological types, mass ratios, orbital configurations, etc. On one side,
these simulations have to be run in a cosmological context, able to provide a
large number of galaxy pairs, with boundary conditions given by the large-scale
simulations, on the other side the resolution has to be high enough at galaxy
scales, to provide realistic physics. The GalMer database is a library of
thousands simulations of galaxy mergers at moderate spatial resolution and it
is a compromise between the diversity of initial conditions and the details of
underlying physics. We provide all coordinates and data of simulated particles
in FITS binary tables. The main advantages of the database are VO access
interfaces and value-added services which allow users to compare the results of
the simulations directly to observations: stellar population modelling, dust
extinction, spectra, images, visualisation using dedicated VO tools. The GalMer
value-added services can be used as virtual telescope producing broadband
images, 1D spectra, 3D spectral datacubes, thus making our database oriented
towards the usage by observers. We present several examples of the GalMer
database scientific usage obtained from the analysis of simulations and
modelling their stellar population properties, including: (1) studies of the
star formation efficiency in interactions; (2) creation of old counter-rotating
components; (3) reshaping metallicity profiles in elliptical galaxies; (4)
orbital to internal angular momentum transfer; (5) reproducing observed colour
bimodality of galaxies.Comment: 15 pages, 11 figures, 10 tables accepted to A&A. Visualisation of
GalMer simulations, access to snapshot files and value-added tools described
in the paper are available at http://galmer.obspm.fr
- âŠ