research

Galactic Centre stellar winds and Sgr A* accretion

Abstract

(ABRIDGED) We present in detail our new 3D numerical models for the accretion of stellar winds on to Sgr A*. In our most sophisticated models, we put stars on realistic orbits around Sgr A*, include `slow' winds (300 km/s), and account for radiative cooling. We first model only one phase `fast' stellar winds (1000 km/s). For wind sources fixed in space, the accretion rate is Mdot ~ 1e-5 Msun/yr, fluctuates by < 10%, and is in a good agreement with previous models. In contrast, Mdot decreases by an order of magnitude for stars following circular orbits, and fluctuates by ~ 50%. Then we allow a fraction of stars to produce slow winds. Much of these winds cool radiatively, forming cold clumps immersed into the X-ray emitting gas. We test two orbital configurations for the stars in this scenario, an isotropic distribution and two rotating discs with perpendicular orientation. The morphology of cold gas is quite sensitive to the orbits. In both cases, however, most of the accreted gas is hot, with an almost constant Mdot ~ 3e-6 Msun/yr, consistent with Chandra observations. The cold gas accretes in intermittent, short but powerful episodes which may give rise to large amplitude variability in the luminosity of Sgr A* on time scales of 10s to 100s of years. The circularisation radii for the flows are ~ 1e3 and 1e4 Rsch, for the one and two-phase wind simulations, respectively, never forming the quasi-spherical accretion flows suggested in some previous work. Our work suggests that, averaged over time scales of 100s to 1000s of years, the radiative and mechanical luminosity of Sgr A* may be substantially higher than it is in its current state. Further improvements of the wind accretion modelling of Sgr A* will rely on improved observational constraints for the wind properties and stellar orbits.Comment: 16 pages, 18 colour figures. Accepted by MNRAS. Full resolution paper and movies available at http://www.mpa-garching.mpg.de/~jcuadra/Winds/ . (v2: minor changes

    Similar works

    Full text

    thumbnail-image