154 research outputs found

    Temperature effect on the sensitivity of the copepod Eucyclops serrulatus (Crustacea, Copepoda, Cyclopoida) to agricultural pollutants in the hyporheic zone

    Get PDF
    Abstract The sensitivity of freshwater invertebrates to agricultural pollutants is supposed to increase with rising temperature due to global warming. The aim of this study was to measure the effect of temperature on the lethal toxicity of ammonia-N, the herbicide Imazamox and the mixture of the two chemicals, in the adults and the juveniles of a population of the copepod Eucyclops serrulatus. This is a widely distributed species found in surface waters, in transitional habitats between surface water and groundwater, and in genuine groundwater environments. We tested the sensitivity by short-term bioassays (96 h) at 15°C and 18°C, respectively. Our results highlighted the following: (1) increasing temperature affected the sensitivity of the adults to ammonia-N and of the juveniles to the mixture, all of which were more sensitive to its detrimental effects at 18°C; (2) the juvenile stages were more sensitive than the adults to all toxicants, and (3) for all combinations of chemicals and temperatures, the effects were synergistic and approximately one order of magnitude greater than those expected according to a concentration addition model when comparing the LC50 for each chemical in the mixture with the LC50s of chemicals individually assayed. Overall, in a context of global change, ammonia-N and mixtures of agricultural pollutants may affect the survival rate of species that spend a part or the whole life-cycle in the hyporheic habitat, with detrimental effects to biodiversity and ecosystem services provided by the hyporheic biota

    Reaction between YBa2Cu3O7−x and water

    Full text link
    Reaction between water at 80 °C and YBa2Cu3O7−x (0.8<x<0.0) is studied using x‐ray absorption fine structure (EXAFS) and x‐ray diffraction (XRD). Oxygen deficient YBa2Cu3O7−x reacts with water and decomposes into BaCO3, CuO and at least one other Cu containing phase. YBa2Cu3O7 reacts slowly with water and the bulk material is modified before it decomposes. The structural and chemical modifications of this material resemble those reported for YBa2Cu3O7 reacted with hydrogen gas. We conclude that either hydrogen or water enters the bulk before decomposition.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87349/2/360_1.pd

    Configurational Entropy and its Crisis in Metastable States: Ideal Glass Transition in a Dimer Model as a Paragidm of a Molecular Glass

    Full text link
    We discuss the need for discretization to evaluate the configurational entropy in a general model. We also discuss the prescription using restricted partition function formalism to study the stationary limit of metastable states. We introduce a lattice model of dimers as a paradigm of molecular fluid and study metastability in it to investigate the root cause of glassy behavior. We demonstrate the existence of the entropy crisis in metastable states, from which it follows that the entropy crisis is the root cause underlying the ideal glass transition in systems with particles of all sizes. The orientational interactions in the model control the nature of the liquid-liquid transition observed in recent years in molecular glasses.Comment: 36 pages, 9 figure

    Adaptive Density Estimation on the Circle by Nearly-Tight Frames

    Full text link
    This work is concerned with the study of asymptotic properties of nonparametric density estimates in the framework of circular data. The estimation procedure here applied is based on wavelet thresholding methods: the wavelets used are the so-called Mexican needlets, which describe a nearly-tight frame on the circle. We study the asymptotic behaviour of the L2L^{2}-risk function for these estimates, in particular its adaptivity, proving that its rate of convergence is nearly optimal.Comment: 30 pages, 3 figure

    Inherent Structure Entropy of Supercooled Liquids

    Full text link
    We present a quantitative description of the thermodynamics in a supercooled binary Lennard Jones liquid via the evaluation of the degeneracy of the inherent structures, i.e. of the number of potential energy basins in configuration space. We find that for supercooled states, the contribution of the inherent structures to the free energy of the liquid almost completely decouples from the vibrational contribution. An important byproduct of the presented analysis is the determination of the Kauzmann temperature for the studied system. The resulting quantitative picture of the thermodynamics of the inherent structures offers new suggestions for the description of equilibrium and out-of-equilibrium slow-dynamics in liquids below the Mode-Coupling temperature.Comment: 11 pages of Latex, 3 figure

    Equilibrium with a Market of Permits

    Full text link

    Lysine-based surfactants in nanovesicle formulations: the role of cationic charge position and hydrophobicity in in vitro cytotoxicity and intracellular delivery

    Get PDF
    Understanding nanomaterial interactions within cells is of increasing importance for assessing their toxicity and cellular transport. Here, we developed nanovesicles containing bioactive cationic lysine-based amphiphiles, and assessed whether these cationic compounds increase the likelihood of intracellular delivery and modulate toxicity. We found different cytotoxic responses among the formulations, depending on surfactant, cell line and endpoint assayed. The induction of mitochondrial dysfunction, oxidative stress and apoptosis were the general mechanisms underlying cytotoxicity. Fluorescence microscopy analysis demonstrated that nanovesicles were internalized by HeLa cells, and evidenced that their ability to release endocytosed materials into cell cytoplasm depends on the structural parameters of amphiphiles. The cationic charge position and hydrophobicity of surfactants determine the nanovesicle interactions within the cell and, thus, the resulting toxicity and intracellular behavior after cell uptake of the nanomaterial. The insights into some toxicity mechanisms of these new nanomaterials contribute to reducing the uncertainty surrounding their potential health hazards
    corecore