192 research outputs found

    Users volatility on Reddit and Voat

    Full text link
    Social media platforms are like giant arenas where users can rely on different content and express their opinions through likes, comments, and shares. However, do users welcome different perspectives or only listen to their preferred narratives? This paper examines how users explore the digital space and allocate their attention among communities on two social networks, Voat and Reddit. By analysing a massive dataset of about 215 million comments posted by about 16 million users on Voat and Reddit in 2019 we find that most users tend to explore new communities at a decreasing rate, meaning they have a limited set of preferred groups they visit regularly. Moreover, we provide evidence that preferred communities of users tend to cover similar topics throughout the year. We also find that communities have a high turnover of users, meaning that users come and go frequently showing a high volatility that strongly departs from a null model simulating users' behaviour

    Characterizing Engagement Dynamics across Topics on Facebook

    Full text link
    Social media platforms heavily changed how users consume and digest information and, thus, how the popularity of topics evolves. In this paper, we explore the interplay between the virality of controversial topics and how they may trigger heated discussions and eventually increase users' polarization. We perform a quantitative analysis on Facebook by collecting 57M\sim57M posts from 2M\sim2M pages and groups between 2018 and 2022, focusing on engaging topics involving scandals, tragedies, and social and political issues. Using logistic functions, we quantitatively assess the evolution of these topics finding similar patterns in their engagement dynamics. Finally, we show that initial burstiness may predict the rise of users' future adverse reactions regardless of the discussed topic

    The ASTAROTH project

    Get PDF
    The most discussed topic in direct search for dark matter is arguably the verification of the DAMA claim. In fact, the observed annual modulation of the signal rate in an array of NaI(Tl) detectors can be interpreted as the awaited signature of dark matter interaction. Several experimental groups are currently engaged in the attempt to verify such a game-changing claim with the same target material. However, all present-day designs are based on a light readout via Photomultiplier Tubes, whose high noise makes it challenging to achieve a low background in the 1-6 keV energy region of the signal. Even harder it would be to break below 1 keV energy threshold, where a large fraction of the signal potentially awaits to be uncovered. ASTAROTH is an R\&D project to overcome these limitations by using Silicon Photomultipliers (SiPM) matrices to collect scintillation light from NaI(Tl). The all-active design based on cubic crystals is operating in the 87-150 K temperature range where SiPM noise can be even a hundred times lower with respect to PMTs. The cryostat was developed following an innovative design and is based on a copper chamber immersed in a liquid argon bath that can be instrumented as a veto detector. We have characterized separately the crystal and the SiPM response at low temperature and we have proceeded to the first operation of a NaI(Tl) crystal read by SiPM in cryogeny.Comment: proceedings of the LRT 2022 conferenc

    Equalizing the Pixel Response of the Imaging Photoelectric Polarimeter On-Board the IXPE Mission

    Full text link
    The Gas Pixel Detector is a gas detector, sensitive to the polarization of X-rays, currently flying on-board IXPE - the first observatory dedicated to X-ray polarimetry. It detects X-rays and their polarization by imaging the ionization tracks generated by photoelectrons absorbed in the sensitive volume, and then reconstructing the initial direction of the photoelectrons. The primary ionization charge is multiplied and ultimately collected on a finely-pixellated ASIC specifically developed for X-ray polarimetry. The signal of individual pixels is processed independently and gain variations can be substantial, of the order of 20%. Such variations need to be equalized to correctly reconstruct the track shape, and therefore its polarization direction. The method to do such equalization is presented here and is based on the comparison between the mean charge of a pixel with respect to the other pixels for equivalent events. The method is shown to finely equalize the response of the detectors on board IXPE, allowing a better track reconstruction and energy resolution, and can in principle be applied to any imaging detector based on tracks.Comment: Accepted for publication in The Astronomical Journal. 10 pages, 19 figure

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: Data from an international prospective cohort study

    Get PDF
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population

    Minimally invasive spleen-preserving distal pancreatectomy: real-world data from the italian national registry of minimally invasive pancreatic surgery

    Get PDF
    Aim: Minimally invasive distal pancreatectomy has become the standard of care for benign and low malignant lesions. Spleen preservation in this setting has been proposed to reduce surgical trauma and long-term sequelae. The aim of the current study is to present real-world data on indications, techniques, and outcomes of spleen-preserving distal pancreatectomy (SPDP). Methods: Patients who underwent SPDP and distal pancreatectomy with splenectomy (DPWS) were extracted from the 2019-2022 Italian National Registry for Minimally Invasive Pancreatic Surgery (IGoMIPS). Perioperative and pathological data were collected. Results: One hundred and ten patients underwent SPDP and five hundred and seventy-eight underwent DPWS. Patients undergoing SPDP were significantly younger (56 vs. 63.5 years; P < 0.001). Seventy-six percent of SPDP cases were performed in six out of thirty-four IGoMIPS centers. SPDP was performed predominantly for Neuroendocrine Tumors (43.6% vs.23.5%; P < 0.001) and for smaller lesions (T1 57.6% vs. 29.8%; P < 0.001). The conversion rate was higher in the case of DPWS (7.6% vs. 0.9%; P = 0.006), even when pancreatic cancer was ruled out (5.0% vs. 0.9%; P = 0.045). The robotic approach was most commonly used for SPDP (50.9% vs. 29.7%; P < 0.001). No difference in postoperative outcomes and length of stay was observed between the two groups, as well as between robotic and laparoscopic approaches in the SPDP group. A trend toward a lower rate of postoperative sepsis was observed after SPDP (0.9% vs. 5.2%; P = 0.056). In 84.7% of SPDP, splenic vessels were preserved (Kimura procedure) without an impact on short-term postoperative outcomes. Conclusion: In this registry analysis, SPDP was feasible and safe. The Kimura procedure was prevalent over the Warshaw procedure. The typical patient undergoing SPDP was young with a neuroendocrine tumor at an early stage. Robotic assistance was used more frequently for SPDP than for DPWS

    The Italian National Project of Astrobiology-Life in Space-Origin, Presence, Persistence of Life in Space, from Molecules to Extremophiles

    Get PDF
    The \u2018\u2018Life in Space\u2019\u2019 project was funded in the wake of the Italian Space Agency\u2019s proposal for the development of a network of institutions and laboratories conceived to implement Italian participation in space astrobiology experiments

    FOOT: a new experiment to measure nuclear fragmentation at intermediate energies

    Get PDF
    Summary: Charged particle therapy exploits proton or 12C beams to treat deep-seated solid tumors. Due to the advantageous characteristics of charged particles energy deposition in matter, the maximum of the dose is released to the tumor at the end of the beam range, in the Bragg peak region. However, the beam nuclear interactions with the patient tissues induces fragmentation both of projectile and target nuclei and needs to be carefully taken into account. In proton treatments, target fragmentation produces low energy, short range fragments along all the beam range, which deposit a non negligible dose in the entry channel. In 12C treatments the main concern is represented by long range fragments due to beam fragmentation that release their dose in the healthy tissues beyond the tumor. The FOOT experiment (FragmentatiOn Of Target) of INFN is designed to study these processes, in order to improve the nuclear fragmentation description in next generation Treatment Planning Systems and the treatment plans quality. Target (16O and 12C nuclei) fragmentation induced by –proton beams at therapeutic energies will be studied via an inverse kinematic approach, where 16O and 12C therapeutic beams impinge on graphite and hydrocarbon targets to provide the nuclear fragmentation cross section on hydrogen. Projectile fragmentation of 16O and 12C beams will be explored as well. The FOOT detector includes a magnetic spectrometer for the fragments momentum measurement, a plastic scintillator for ΔE and time of flight measurements and a crystal calorimeter to measure the fragments kinetic energy. These measurements will be combined in order to make an accurate fragment charge and isotopic identification. Keywords: Hadrontherapy, Nuclear fragmentation cross sections, Tracking detectors, Scintillating detector

    X-ray polarimetry reveals the magnetic field topology on sub-parsec scales in Tycho's supernova remnant

    Full text link
    Supernova remnants are commonly considered to produce most of the Galactic cosmic rays via diffusive shock acceleration. However, many questions about the physical conditions at shock fronts, such as the magnetic-field morphology close to the particle acceleration sites, remain open. Here we report the detection of a localized polarization signal from some synchrotron X-ray emitting regions of Tycho's supernova remnant made by the Imaging X-ray Polarimetry Explorer. The derived polarization degree of the X-ray synchrotron emission is 9+/-2% averaged over the whole remnant, and 12+/-2% at the rim, higher than the 7-8% polarization value observed in the radio band. In the west region the polarization degree is 23+/-4%. The X-ray polarization degree in Tycho is higher than for Cassiopeia A, suggesting a more ordered magnetic-field or a larger maximum turbulence scale. The measured tangential polarization direction corresponds to a radial magnetic field, and is consistent with that observed in the radio band. These results are compatible with the expectation of turbulence produced by an anisotropic cascade of a radial magnetic-field near the shock, where we derive a magnetic-field amplification factor of 3.4+/-0.3. The fact that this value is significantly smaller than those expected from acceleration models is indicative of highly anisotropic magnetic-field turbulence, or that the emitting electrons either favor regions of lower turbulence, or accumulate close to where the magnetic-field orientation is preferentially radially oriented due to hydrodynamical instabilities.Comment: 31 pages, 7 figures, 3 tables. Accepted for publication in ApJ. Revised versio

    Magnetic structures and turbulence in SN 1006 revealed with imaging X-ray polarimetry

    Full text link
    Young supernova remnants (SNRs) strongly modify surrounding magnetic fields, which in turn play an essential role in accelerating cosmic rays (CRs). X-ray polarization measurements probe magnetic field morphology and turbulence at the immediate acceleration site. We report the X-ray polarization distribution in the northeastern shell of SN1006 from a 1 Ms observation with the Imaging X-ray Polarimetry Explorer (IXPE). We found an average polarization degree of 22.4±3.5%22.4\pm 3.5\% and an average polarization angle of 45.4±4.5-45.4\pm 4.5^\circ (measured on the plane of the sky from north to east). The X-ray polarization angle distribution reveals that the magnetic fields immediately behind the shock in the northeastern shell of SN 1006 are nearly parallel to the shock normal or radially distributed, similar to that in the radio observations, and consistent with the quasi-parallel CR acceleration scenario. The X-ray emission is marginally more polarized than that in the radio band. The X-ray polarization degree of SN 1006 is much larger than that in Cas A and Tycho, together with the relatively tenuous and smooth ambient medium of the remnant, favoring that CR-induced instabilities set the turbulence in SN 1006 and CR acceleration is environment-dependent.Comment: 15 pages, 4 Figures, 2 Tables; accepted for publication in The Astrophysical Journa
    corecore