16,253 research outputs found
Quantum Phase-Slip Junction Under Microwave Irradiation
We consider the dynamics of a quantum phase-slip junction (QPSJ) -- a dual
Josephson junction -- connected to a microwave source with frequency
. With respect to an ordinary Josephson junction, a QPSJ
can sustain dual Shapiro steps, consisting of well-defined current plateaus at
multiple integers of in the current-voltage (I-V)
characteristic. The experimental observation of these plateaus has been elusive
up to now. We argue that thermal as well as quantum fluctuations can smear the
I-V characteristic considerably. In order to understand these effects, we study
a current-biased QPSJ under microwave irradiation and connected to an inductive
and resistive environment. We find that the effect of these fluctuations are
governed by the resistance of the environment and by the ratio of the
phase-slip energy and the inductive energy. Our results are of interest for
experiments aimed at the observation of dual Shapiro steps in QPSJ devices for
the definition of a new quantum current standard.Comment: 12 pages, 9 figures, comments and suggestions would be greatly
appreciate
Electronic entanglement in late transition metal oxides
Here we present a study of the entanglement in the electronic structure of
the late transition metal monoxides - MnO, FeO, CoO, and NiO - obtained by
means of density-functional theory in the local density approximation combined
with dynamical mean-field theory (LDA+DMFT). The impurity problem is solved
through Exact Diagonalization (ED), which grants full access to the thermally
mixed many-body ground state density operator. The quality of the electronic
structure is affirmed through a direct comparison between the calculated
electronic excitation spectrum and photoemission experiments. Our treatment
allows for a quantitative investigation of the entanglement in the electronic
structure. Two main sources of entanglement are explicitly resolved through the
use of a fidelity based geometrical entanglement measure, and additional
information is gained from a complementary entropic entanglement measure. We
show that the interplay of crystal field effects and Coulomb interaction causes
the entanglement in CoO to take a particularly intricate form.Comment: Minor changes. Journal reference adde
Recurring patterns in stationary intervals of abdominal uterine electromyograms during gestation
Abdominal uterine electromyograms (uEMG) studies have focused on uterine contractions to describe the evolution of uterine activity and preterm birth (PTB) prediction. Stationary, non-contracting uEMG has not been studied. The aim of the study was to investigate the recurring patterns in stationary uEMG, their relationship with gestation age and PTB, and PTB predictivity. A public database of 300 (38 PTB) three-channel (S1-S3) uEMG recordings of 30 min, collected between 22 and 35 weeks' gestation, was used. Motion and labour contraction-free intervals in uEMG were identified as 5-min weak-sense stationarity intervals in 268 (34 PTB) recordings. Sample entropy (SampEn), percentage recurrence (PR), percentage determinism (PD), entropy (ER), and maximum length (L MAX) of recurrence were calculated and analysed according to the time to delivery and PTB. Random time series were generated by random shuffle (RS) of actual data. Recurrence was present in actual data (p<0.001) but not RS. In S3, PR (p<0.005), PD (p<0.01), ER (p<0.005), and L MAX (p<0.05) were higher, and SampEn lower (p<0.005) in PTB. Recurrence indices increased (all p<0.001) and SampEn decreased (p<0.01) with decreasing time to delivery, suggesting increasingly regular and recurring patterns with gestation progression. All indices predicted PTB with AUC≥0.62 (p<0.05). Recurring patterns in stationary non-contracting uEMG were associated with time to delivery but were relatively poor predictors of PTB
Analytical Modeling of Interference Aware Power Control for the Uplink of Heterogeneous Cellular Networks
Inter-cell interference is one of the main limiting factors in current
Heterogeneous Cellular Networks (HCNs). Uplink Fractional Power Control (FPC)
is a well known method that aims to cope with such limiting factor as well as
to save battery live. In order to do that, the path losses associated with
Mobile Terminal (MT) transmissions are partially compensated so that a lower
interference is leaked towards neighboring cells. Classical FPC techniques only
consider a set of parameters that depends on the own MT transmission, like
desired received power at the Base Station (BS) or the path loss between the MT
and its serving BS, among others. Contrary to classical FPC, in this paper we
use stochastic geometry to analyze a power control mechanism that keeps the
interference generated by each MT under a given threshold. We also consider a
maximum transmitted power and a partial compensation of the path loss.
Interestingly, our analysis reveals that such Interference Aware (IA) method
can reduce the average power consumption and increase the average spectral
efficiency. Additionally, the variance of the interference is reduced, thus
improving the performance of Adaptive Modulation and Coding (AMC) since the
interference can be better estimated at the MT.Comment: 13 pages, 1 table and 7 figures. This work has been submitted to the
IEEE for possible publication. Copyright may be transferred without notice,
after which this version may no longer be accessibl
Analytic continuation by averaging Pad\'e approximants
The ill-posed analytic continuation problem for Green's functions and
self-energies is investigated by revisiting the Pad\'{e} approximants
technique. We propose to remedy the well-known problems of the Pad\'{e}
approximants by performing an average of several continuations, obtained by
varying the number of fitted input points and Pad\'{e} coefficients
independently. The suggested approach is then applied to several test cases,
including Sm and Pr atomic self-energies, the Green's functions of the Hubbard
model for a Bethe lattice and of the Haldane model for a nano-ribbon, as well
as two special test functions. The sensitivity to numerical noise and the
dependence on the precision of the numerical libraries are analysed in detail.
The present approach is compared to a number of other techniques, i.e. the
non-negative least-square method, the non-negative Tikhonov method and the
maximum entropy method, and is shown to perform well for the chosen test cases.
This conclusion holds even when the noise on the input data is increased to
reach values typical for quantum Monte Carlo simulations. The ability of the
algorithm to resolve fine structures is finally illustrated for two relevant
test functions.Comment: 10 figure
Electron correlations in MnGaAs as seen by resonant electron spectroscopy and dynamical mean field theory
After two decades from the discovery of ferromagnetism in Mn-doped GaAs, its
origin is still debated, and many doubts are related to the electronic
structure. Here we report an experimental and theoretical study of the valence
electron spectrum of Mn-doped GaAs. The experimental data are obtained through
the differences between off- and on-resonance photo-emission data. The
theoretical spectrum is calculated by means of a combination of
density-functional theory in the local density approximation and dynamical
mean-field theory (LDA+DMFT), using exact diagonalisation as impurity solver.
Theory is found to accurately reproduce measured data, and illustrates the
importance of correlation effects. Our results demonstrate that the Mn states
extend over a broad range of energy, including the top of the valence band, and
that no impurity band splits off from the valence band edge, while the induced
holes seem located primarily around the Mn impurity.Comment: 5 pages, 4 figure
Rotational sensitivity of the "G-Pisa" gyrolaser
G-Pisa is an experiment investigating the possibility to operate a high
sensitivity laser gyroscope with area less than for improving the
performances of the mirrors suspensions of the gravitational wave antenna
Virgo. The experimental set-up consists in a He-Ne ring laser with a 4 mirrors
square cavity. The laser is pumped by an RF discharge where the RF oscillator
includes the laser plasma in order to reach a better stability. The contrast of
the Sagnac fringes is typically above 50% and a stable regime has been reached
with the laser operating both single mode or multimode. The effect of hydrogen
contamination on the laser was also checked. A low-frequency sensitivity, below
, in the range of has been
measured.Comment: 6 pages, 6 figures, presented at the EFTF-IFCS joint conference 200
Superconducting cascade electron refrigerator
The design and operation of an electronic cooler based on a combination of
superconducting tunnel junctions is described. The cascade extraction of
hot-quasiparticles, which stems from the energy gaps of two different
superconductors, allows for a normal metal to be cooled down to about 100 mK
starting from a bath temperature of 0.5 K. We discuss the practical
implementation, potential performance and limitations of such a device
- …