136 research outputs found

    Probing light vector mediators with coherent scattering at future facilities

    Get PDF
    Future experiments dedicated to the detection of Coherent Elastic Neutrino-Nucleus Scattering may be powerful tools in probing light new physics. In this paper we study the sensitivity on light Z' mediators of two proposed experiments: a directional low pressure Time Projection Chamber detector, nu BDX-DRIFT, that will utilize neutrinos produced at the Long Baseline Neutrino Facility, and several possible experiments to be installed at the European Spallation Source. We compare the results obtained with existing limits from fixed-target, accelerator, solar neutrino and reactor experiments. Furthermore, we show that these experiments have the potential to test unexplored regions that, in some case, could explain the anomalous magnetic moment of the muon or peculiar spectral features in the cosmic neutrino spectrum observed by IceCube

    Resistance-based probabilistic design by order statistics for an oil and gas deep-water well casing string affected by wear during kick load

    Get PDF
    Deep-water wells for oil and gas extraction make structural components, such as casing and tubing, work in extremely harsh environmental conditions that accelerate component degradation and increase failure probability. Therefore, it is important to properly design casing strings under these operative circumstances (Baraldi et al., 2012)

    Drug design and synthesis of first in class PDZ1 targeting NHERF1 inhibitors as anticancer agents

    Get PDF
    Targeted approaches aiming at modulating NHERF1 activity, rather than its overall expression, would be preferred to preserve the normal functions of this versatile protein. We focused our attention on the NHERF1/PDZ1 domain that governs its membrane recruitment/displacement through a transient phosphorylation switch. We herein report the design and synthesis of novel NHERF1 PDZ1 domain inhibitors. These compounds have potential therapeutic value when used in combination with antagonists of β-catenin to augment apoptotic death of colorectal cancer cells refractory to currently available Wnt/β-catenin-targeted agents

    Terra Nova Bay, Antarctica, Geomagnetic observatory, magnetic observations results, 2001-2002, 2002-2003

    Get PDF
    These reports deal with activities undertaken at the Geomagnetic Observatory TNB in Antarctica during the austral summers 2001-2002 and 2002-2003. Since the Observatory was located very close to the Base, where the growing human activity gave rise to an increased artificial electromagnetic noise, during this campaign, the Observatory has been moved to a new site, called OASI, about 1 km away from the old site. In austral summer 2001-2002, geomagnetic absolute measurements have been performed at both sites, in order to evaluate possible spatial gradients between them. Conversely, the variometer measurements have been carried out only at the new site

    Towards the Opening of a Magnetic Observatory at Dome C (Antarctica)

    Get PDF
    The opening of a new magnetic observatory is one of the activities aimed at by the creation of a scientific base at DomeC, Antarctica (lat. 75° 06’S, long. 123° 21’E, elev. 3200m). There are many reasons supporting this objective: all Antarctic magnetic observatories providing absolute values are located along the shore and are therefore subject to coast effects and crustal field contamination. DomeC and Vostok will be so far the sole observatories free from these effects. On one hand, high latitude absolute observatories are very useful to global or regional modeling based upon satellite data, because, at high latitudes, only total field measurements can be used due to the strong influence of field aligned currents. On the other hand, the availability of magnetic data from the well distributed observatories of Terra Nova Bay (TNB), Scott Base (SBA), Dumont d’Urville (DRV), Casey (CSY) and Vostok (VOS) will provide strong support to auroral and polar cap ionosphere studies as well as asymmetry analyses between Northern and Southern hemispheres. This paper summarizes the results gathered during three summer campaigns, in 1999-2000, 2001 and 2003-2004

    Selective targeting of HDAC1/2 elicits anticancer effects through Gli1 acetylation in preclinical models of SHH Medulloblastoma.

    Get PDF
    SHH Medulloblastoma (SHH-MB) is a pediatric brain tumor characterized by an inappropriate activation of the developmental Hedgehog (Hh) signaling. SHH-MB patients treated with the FDA-approved vismodegib, an Hh inhibitor that targets the transmembrane activator Smoothened (Smo), have shown the rapid development of drug resistance and tumor relapse due to novel Smo mutations. Moreover, a subset of patients did not respond to vismodegib because mutations were localized downstream of Smo. Thus, targeting downstream Hh components is now considered a preferable approach. We show here that selective inhibition of the downstream Hh effectors HDAC1 and HDAC2 robustly counteracts SHH-MB growth in mouse models. These two deacetylases are upregulated in tumor and their knockdown inhibits Hh signaling and decreases tumor growth. We demonstrate that mocetinostat (MGCD0103), a selective HDAC1/HDAC2 inhibitor, is a potent Hh inhibitor and that its effect is linked to Gli1 acetylation at K518. Of note, we demonstrate that administration of mocetinostat to mouse models of SHH-MB drastically reduces tumor growth, by reducing proliferation and increasing apoptosis of tumor cells and prolongs mouse survival rate. Collectively, these data demonstrate the preclinical efficacy of targeting the downstream HDAC1/2-Gli1 acetylation in the treatment of SHH-MB

    Enzymatic spermine metabolites induce apoptosis associated with increase of p53, caspase-3 and mir-34a in both neuroblastoma cells, SJNKP and the N-Myc-amplified form IMR5

    Get PDF
    Neuroblastoma (NB) is a common malignant solid tumor in children and accounts for 15% of childhood cancer mortality. Amplification of the N-Myc oncogene is a well-established poor prognostic marker in NB patients and strongly correlates with higher tumor aggression and resistance to treatment. New therapies for patients with N-Myc-amplified NB need to be developed. After treating NB cells with BSAO/SPM, the detection of apoptosis was determined after annexin V-FITC labeling and DNA staining with propidium iodide. The mitochondrial membrane potential activity was checked, labeling cells with the probe JC-1 dye. We analyzed, by real-time RT-PCR, the transcript of genes involved in the apoptotic process, to determine possible down-or upregulation of mRNAs after the treatment on SJNKP and the N-Myc-amplified IMR5 cell lines with BSAO/SPM. The experiments were carried out considering the proapoptotic genes Tp53 and caspase-3. After treatment with BSAO/SPM, both cell lines displayed increased mRNA levels for all these proapoptotic genes. Western blotting analysis with PARP and caspase-3 antibody support that BSAO/SPM treatment induces high levels of apoptosis in cells. The major conclusion is that BSAO/SPM treatment leads to antiproliferative and cytotoxic activity of both NB cell lines, associated with activation of apoptosis

    Blockade of EIF5A hypusination limits colorectal cancer growth by inhibiting MYC elongation

    Get PDF
    Eukaryotic Translation Initiation Factor 5A (EIF5A) is a translation factor regulated by hypusination, a unique posttranslational modification catalyzed by deoxyhypusine synthetase (DHPS) and deoxyhypusine hydroxylase (DOHH) starting from the polyamine spermidine. Emerging data are showing that hypusinated EIF5A regulates key cellular processes such as autophagy, senescence, polyamine homeostasis, energy metabolism, and plays a role in cancer. However, the effects of EIF5A inhibition in preclinical cancer models, the mechanism of action, and specific translational targets are still poorly understood. We show here that hypusinated EIF5A promotes growth of colorectal cancer (CRC) cells by directly regulating MYC biosynthesis at specific pausing motifs. Inhibition of EIF5A hypusination with the DHPS inhibitor GC7 or through lentiviral-mediated knockdown of DHPS or EIF5A reduces the growth of various CRC cells. Multiplex gene expression analysis reveals that inhibition of hypusination impairs the expression of transcripts regulated by MYC, suggesting the involvement of this oncogene in the observed effect. Indeed, we demonstrate that EIF5A regulates MYC elongation without affecting its mRNA content or protein stability, by alleviating ribosome stalling at five distinct pausing motifs in MYC CDS. Of note, we show that blockade of the hypusination axis elicits a remarkable growth inhibitory effect in preclinical models of CRC and significantly reduces the size of polyps in APCMin/+ mice, a model of human familial adenomatous polyposis (FAP). Together, these data illustrate an unprecedented mechanism, whereby the tumor-promoting properties of hypusinated EIF5A are linked to its ability to regulate MYC elongation and provide a rationale for the use of DHPS/EIF5A inhibitors in CRC therapy

    PLCγ2 regulates TREM2 signalling and integrin-mediated adhesion and migration of human iPSC-derived macrophages

    Get PDF
    Human genetic studies have linked rare coding variants in microglial genes, such as TREM2, and more recently PLCG2 to Alzheimer’s disease (AD) pathology. The P522R variant in PLCG2 has been shown to confer protection for AD and to result in a subtle increase in enzymatic activity. PLCγ2 is a key component of intracellular signal transduction networks and induces Ca2+ signals downstream of many myeloid cell surface receptors, including TREM2. To explore the relationship between PLCγ2 and TREM2 and the role of PLCγ2 in regulating immune cell function, we generated human induced pluripotent stem cell (iPSC)- derived macrophages from isogenic lines with homozygous PLCG2 knockout (Ko). Stimulating TREM2 signalling using a polyclonal antibody revealed a complete lack of calcium flux and IP1 accumulation in PLCγ2 Ko cells, demonstrating a non-redundant role of PLCγ2 in calcium release downstream of TREM2. Loss of PLCγ2 led to broad changes in expression of several macrophage surface markers and phenotype, including reduced phagocytic activity and survival, while LPS-induced secretion of the inflammatory cytokines TNFα and IL-6 was unaffected. We identified additional deficits in PLCγ2- deficient cells that compromised cellular adhesion and migration. Thus, PLCγ2 is key in enabling divergent cellular functions and might be a promising target to increase beneficial microglial functions

    Identification of a minimum number of genes to predict triple-negative breast cancer subgroups from gene expression profiles

    Get PDF
    Background: Triple-negative breast cancer (TNBC) is a very heterogeneous disease. Several gene expression and mutation profiling approaches were used to classify it, and all converged to the identification of distinct molecular subtypes, with some overlapping across different approaches. However, a standardised tool to routinely classify TNBC in the clinics and guide personalised treatment is lacking. We aimed at defining a specific gene signature for each of the six TNBC subtypes proposed by Lehman et al. in 2011 (basal-like 1 (BL1); basal-like 2 (BL2); mesenchymal (M); immunomodulatory (IM); mesenchymal stem-like (MSL); and luminal androgen receptor (LAR)), to be able to accurately predict them. Methods: Lehman’s TNBCtype subtyping tool was applied to RNA-sequencing data from 482 TNBC (GSE164458), and a minimal subtype-specific gene signature was defined by combining two class comparison techniques with seven attribute selection methods. Several machine learning algorithms for subtype prediction were used, and the best classifier was applied on microarray data from 72 Italian TNBC and on the TNBC subset of the BRCA-TCGA data set. Results: We identified two signatures with the 120 and 81 top up- and downregulated genes that define the six TNBC subtypes, with prediction accuracy ranging from 88.6 to 89.4%, and even improving after removal of the least important genes. Network analysis was used to identify highly interconnected genes within each subgroup. Two druggable matrix metalloproteinases were found in the BL1 and BL2 subsets, and several druggable targets were complementary to androgen receptor or aromatase in the LAR subset. Several secondary drug–target interactions were found among the upregulated genes in the M, IM and MSL subsets. Conclusions: Our study took full advantage of available TNBC data sets to stratify samples and genes into distinct subtypes, according to gene expression profiles. The development of a data mining approach to acquire a large amount of information from several data sets has allowed us to identify a well-determined minimal number of genes that may help in the recognition of TNBC subtypes. These genes, most of which have been previously found to be associated with breast cancer, have the potential to become novel diagnostic markers and/or therapeutic targets for specific TNBC subsets
    • …
    corecore